有理数是能够表示成两个整数之比的数。下面就和我一起了解一下吧,供大家参考。
有理数为整数(正整数、0、负整数)和分数的统称。
有理数可分为正有理数、0、负有理数。正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。由于任何一个整数或分数都可以化为十进制循环小数,反之,每一个十进制循环小数也能化为整数或分数,因此,有理数也可以定义为十进制循环小数。
有理数包括什么有理数包括整数和分数。
整数是一个集合,通常可以分为正整数、零(0)和负整数。在数论中自然数通常被视为与正整数等同,即1,2,3等,但在集合论和计算机科学中自然数则通常是指非负整数,即0,1,2等。
分数是一个整数a和一个正整数b的不等于整数的比。
分数表示一个数是另一个数的几分之几,或一个事件与所有事件的比例。把单位“1”平均分成若干份,表示这样的一份或几份的数叫分数。分子在上,分母在下。
有理数运算法则有什么(1)加法法则
1同号两数相加,取相同的符号,并把绝对值相加;
2绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0;
3一个数同0相加,仍得这个数。
(2)减法法则
减去一个数,等于加上这个数的相反数。
运用此法则时注意“两变”:一是减法变为加法;二是减数变为其相反数。
总结:①有理数的加减法可统一成加法;②因为有理数加减法可统一成加法,所以在加减运算时,适当运用加法运算律,把正数与负数分别相加,可使运算简便但要注意交换加数的位置时,要连同前面的符号一起交换。
(3)乘法的法则
两数相乘,同号得正,异号得负,并把绝对值相乘;任何数同0相乘,都得0。
几个不等于0的数相乘,积的符号由负因数的个数决定当负因数有奇数个时,积为负;当负因数有偶数个时,积为正。
(4)除法的法则
0没有倒数,乘积为1的两个数互为倒数。
两数相除,同号得正,异号得负,并把绝对值相除。
0除以任何一个不为0的数,都得0(分母≠0)利用除法法则可以化简分数。
在有理数混合运算中:1先乘方,再乘除,最后加减;2同级运算从左到右按顺序运算;3若有括号,先小再中最后大,依次计算。
有理数为整数(正整数、0、负整数)和分数的统称。正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。因而有理数集的数可分为正有理数、负有理数和零。由于任何一个整数或分数都可以化为十进制循环小数,反之,每一个十进制循环小数也能化为整数或分数,因此,有理数也可以定义为十进制循环小数。
扩展资料:
有理数的基本运算法则:
(1)加法运算
1、同号两数相加,取与加数相同的符号,并把绝对值相加。
2、异号两数相加,若绝对值相等则互为相反数的两数和为0;若绝对值不相等,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
3、互为相反数的两数相加得0。
4、一个数同0相加仍得这个数。
5、互为相反数的两个数,可以先相加。
6、符号相同的数可以先相加。
7、分母相同的数可以先相加。
8、几个数相加能得整数的可以先相加。
(2)减法运算
减去一个数,等于加上这个数的相反数,即把有理数的减法利用数的相反数变成加法进行运算。
(3)乘法运算
1、同号得正,异号得负,并把绝对值相乘。
2、任何数与零相乘,都得零。
3、几个不等于零的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负,当负因数有偶数个时,积为正。
4、几个数相乘,有一个因数为零,积就为零。
5、几个不等于零的数相乘,首先确定积的符号,然后后把绝对值相乘。
有理数是整数和分数的统称,一切有理数都可以化成分数的形式
有理数可分为整数和分数也可分为正有理数,0,负有理数除了无限不循环小数以外的实数统称有理数英文:rational number读音:yǒu lǐ shù整数和分数统称为有理数,任何一个有理数都可以写成分数m/n(m,n都是整数,且n≠0)的形式任何一个有理数都可以在数轴上表示其中包括整数和通常所说的分数,此分数亦可表示为有限小数或无限循环小数这一定义在数的十进制和其他进位制(如二进制)下都适用数学上,有理数是一个整数 a 和一个非零整数 b 的比(ratio),通常写作 a/b,故又称作分数希腊文称为 λογο,原意为“成比例的数”(rational number),但中文翻译不恰当,逐渐变成“有道理的数”无限不循环小数称之为无理数(例如:圆周率π)有理数和无理数统称为实数所有有理数的集合表示为Q
以下都是有理数:
(1)自然数:数0,1,2,3,……叫做自然数(2)正整数:+1,+2,+3,……叫做正整数(3)整数:正整数、0、负整数统称为整数(4)分数:正分数、负分数统称为分数(5)奇数:不能被2整除的整数叫做奇数如-3,-1,1,5等所有的奇数都可用2n-1或2n+1表示,n为整数(6)偶数:能被2整除的整数叫做偶数如-2,2,4,8等所有的偶数都可用2n表示,n为整数(7)质数:如果一个大于1的整数,除了1和它本身外,没有其他因数,这个数就称为质数,又称素数,如2,3,11,13等2是最小的质数(8)合数:如果一个大于1的整数,除了1和它本身外,还有其他因数,这个数就称为合数,如4,6,9,15等4是最小的合数一个合数至少有3个因数如3,-9811,572727272……,7/22都是有理数全体有理数构成一个集合,即有理数集,用粗体字母Q表示,较现代的一些数学书则用空心字母Q表示有理数集是实数集的子集,即QR相关的内容见数系的扩张有理数集是一个域,即在其中可进行四则运算(0作除数除外),而且对于这些运算,以下的运算律成立(a、b、c等都表示任意的有理数):①加法的交换律 a+b=b+a;②加法的结合律 a+(b+c)=(a+b)+c;③存在数0,使 0+a=a+0=a;④乘法的交换律 ab=ba;⑤乘法的结合律 a(bc)=(ab)c;⑥乘法的分配律 a(b+c)=ab+ac0a=0 一个数乘0还等于0此外,有理数是一个序域,即在其上存在一个次序关系≤0的绝对值还是0有理数还是一个阿基米德域,即对有理数a和b,a≥0,b>0,必可找到一个自然数n,使nb>a由此不难推知,不存在最大的有理数值得一提的是有理数的名称“有理数”这一名称不免叫人费解,有理数并不比别的数更“有道理”事实上,这似乎是一个翻译上的失误有理数一词是从西方传来,在英语中是(rational number),而(rational)通常的意义是“理性的”中国在近代翻译西方科学著作,依据日语中的翻译方法,以讹传讹,把它译成了“有理数”但是,这个词来源于古希腊,其英文词根为(ratio),就是比率的意思(这里的词根是英语中的,希腊语意义与之相同)所以这个词的意义也很显豁,就是整数的“比”与之相对,而“无理数”就是不能精确表示为两个整数之比的数,而并非没有道理(无理数就是无限不循环小数,π也是其中一个无理数)
根据数学书本定义:整数和分数统称为有理数。
①有理数主要是和无理数对应的,无理数是无限不循环小数,比如:5121231234,有很多根式也是无理数,比如√2、√3、√17,但不是所有的根式都是无理数,比如√4、√81
②有理数一定是有限的,或者是无限循环的,注意:循环两个字。
③易混淆的概念:小数一定是有理数,这是错误的。因为小数分为:有限小数、无限循环小数、无限不循环小数。而其中的无限不循环小数就是无理数。所以,一定不能说小数就是有理数!
④所有的有理数一定能转化成分数形式,即下图形式:
有理数是能够表示成两个整数之比的数,包括整数,有限小数和无限循环小数。整数和分数统称为有理数。下面是我整理的相关内容。供大家参考。
有理数是什么意思有理数为整数(正整数、0、负整数)和分数的统称。有理数可分为正有理数、0、负有理数。正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。由于任何一个整数或分数都可以化为十进制循环小数,反之,每一个十进制循环小数也能化为整数或分数,因此,有理数也可以定义为十进制循环小数。
有理数a,b的大小顺序的规定:如果a-b是正有理数,则称当a大于b或b小于a,记作a>b或b<a。任何两个不相等的有理数都可以比较大小。
有理数是实数的紧密子集:每个实数都有任意接近的有理数。一个相关的性质是,仅有理数可化为有限连分数。依照它们的序列,有理数具有一个序拓扑。有理数是实数的(稠密)子集,因此它同时具有一个子空间拓扑。
有理数的由来有理数这个词最初源自古希腊,是由古希腊著名的数学家、哲学家毕达哥拉斯最早提出的,后来传到了西方,明朝的时候经由传教士传到了中国,徐光启当时把它译为“理”,据说“理”在当时文言文中有“比值”的意思,后又传到日本,日本学者就把它理解为“道理、理性”。
近代中国又直接沿用了日本的译法。很大的原因是因为这个词的英文是“rational number”,rational一般作“合理的、理性的”来讲,但是它的词根ratio是“比率、比例”的意思。
有理数是整数和分数的统称,除了无限不循环小数以外的数都统称有理数。它可分为整数和分数,也可分为正有理数,零,负有理数。有理数是整数和分数的集合,但是一切有理数又都可以化成分数的形式,因为整数也可看做是分母为一的分数。有理数的小数部分是有限或者无限循环的数。不是有理数的实数称为无理数,即无理数的小数部分是无限不循环的数。
整数和分数统称为有理数。整数(integer)就是像-3,-2,-1,0,1,2,3,10等这样的数。整数的全体构成整数集,整数集是一个数环。在整数系中,零和正整数统称为自然数。-1、-2、-3、…、-n、…(n为非零自然数)为负整数。则正整数、零与负整数构成整数系。整数不包括小数、分数。分数表示一个数是另一个数的几分之几,或一个事件与所有事件的比例。把单位“1”平均分成若干份,表示这样的一份或几份的数叫分数。分子在上,分母在下。有理数是整数和分数的集合,整数也可看做是分母为一的分数。有理数的小数部分是有限或为无限循环的数。不是有理数的实数称为无理数,即无理数的小数部分是无限不循环的数。有理数集可以用大写黑正体符号Q代表。但Q并不表示有理数,有理数集与有理数是两个不同的概念。有理数集是元素为全体有理数的集合,而有理数则为有理数集中的所有元素。扩展资料有理数名词的来源:事实上,这是一个翻译上的失误。有理数一词是从西方传来,在英语中是rational number,而rational通常的意义是“理性的”,于是有学者将它译成了“有理数”。但是,这个词来源于古希腊,其词根为ratio,就是“比值、比率”的意思。所以这个词的原意是:可写成两个整数之比形式的数。与之相对,“无理数”就是不能表示为两个整数之比的数,而并非没有道理。那么如果知道了有理数其实是“可写成两个整数之比形式的数”的话,对有理数的概念我们将很容易理解了。分数:5/2、5/3、5/4;整数又是特殊的分数,如5=5/1、1=5/5。
以上就是关于有理数是什么数全部的内容,包括:有理数是什么数、有理数指的是什么、有理数的定义是什么等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
微信扫码关注公众号
获取更多考试热门资料