由于化工过程中,各个过程单元相互影响,相互制约,因此很有必要将化工过程看作一个综合系统,并建立起整体优化的概念。于是系统工程这一学科在化学工程中得到了迅速的发展,也取得了明显的效果,形成了化工系统工程。它是系统工程方法与单元操作和化学反应工程这两个学科分支相结合的产物。
过程动态特性:为了保持操作的合理和优化,过程动态特性也是化学工程的重要内容。化学工程的研究对象通常是非常复杂的,主要表现在:
过程本身的复杂性:既有化学的,又有物理的,并且两者时常同时发生,相互影响。
物系的复杂性:既有流体(气体和液体),又有固体,时常多相共存。流体性质可有大幅度变化,如低粘度和高粘度、牛顿型和非牛顿型等。有时,在过程进行中有物性显著改变,如聚合过程中反应物系从低粘度向高粘度的转变。
物系流动时边界的复杂性:由于设备(如塔板、搅拌桨、档板等)的几何形状是多变的,填充物(如催化剂、填料等)的外形也是多变的,使流动边界复杂且难以确定和描述。
化工过程控制:又称过程控制,是化工生产过程自动控制的简称。化工过程控制主要是研讨控制理论在化工生产过程中的应用,包括各种自动化系统的分析、设计和现场的实施、运行,而不包括纯理论的研究和仪表的设计、制造。化工过程控制与一般化工方法最大的区别是动态和反馈。
经典控制理论是以线性常系数微分方程描述系统为出发点而发展起来的。经典控制理论仅限于处理单变量的控制系统。
现代控制理论,采用能表征微分方程组的矩阵方程式描述系统,并用函数的形式表达各种新的控制指标,因而可以通过严格的运算进行系统的分析和设计。若使系统设计得满足一个控制指标的极值(极大或极小)时,就得到所谓的最优控制。由于现代控制理论克服和补充了经典控制理论中的很多缺陷,并能用于多变量系统,故在化工过程控制中得到了很好的应用。
控制应用:在工艺成熟的生产过程中,化工过程控制是提高产量和质量、节约原料和能源、改善劳动强度和节省劳力等方面有力的手段。近年来,运用数学模型方法,探讨和推广现代控制理论在化工过程控制中的应用,不少项目开展了计算机控制和调度管理的研究,有些已经取得了成功,使生产的技术水平和经济效益都有较大的提高。
微信扫码关注公众号
获取更多考试热门资料