线性表出
线性表出,顾名思义,就是用线性的方式表示出来。何为线性的方式,怎么表示出来的?我们看一个例子,对于向量组(1 0),(0 1)和向量(2 3),(2 3)如何用前两个向量构成的向量组表示?不难发现是(2 3)=2乘(1 0)+3乘(0 1)。大家看,等式的右端只有线性运算(加法和数乘),这就是前面提到的线性的方式。这样我们称向量(2 3)可以由向量组(1 0),(0 1)线性表出。注意到等号右面的式子是用线性的方式把向量(1 0),(0 1)组合起来了,所以我们称之为(1 0),(0 1)的一个线性组合。
这样我们就对线性组合及线性表出的概念有了个基本认识。这样是否就够了呢?当然不够。我们在学马克思主义哲学时有由感性认识上升到理性认识之说。理性认识更深刻,是对事物本质的把握。尽管感性认识、理性认识用在这里未必恰当,但道理是相通的。我们经过例子对概念的理解很难说把握住了概念的本质。要体会其本质,还是要从严格的定义出发。
这里要提醒广大考生:对于考研数学中的一些较难理解的概念,有同学觉得定义太抽象,进而放弃了对定义的理解,而试图经过具体的例子理解概念。觉得弄懂了例子,概念就算是理解了。这是不可靠的。从学知识的角度,弄懂例子谈不上理解了概念的内涵和外延从考试的角度,考试考查的是考生对概念的理解和运用,某个具体的例子只是一种具体的应用,所以离考试要求有距离。