姓名:林琼桂 性别:男职称:教授
学院:理工学院 最后学历:博士
主要研究方向:理论物理/量子理论中的解析方法
教学科研情况
主要从事教学。常年讲授本科生数学物理方法课程和研究生高等量子力学课程。曾经讲授研究生量子场论课程一次。曾经与关洪教授合作讲授本科生量子力学课程一次。
科研方面,主要研究量子理论中可以解析处理的一些具体问题,无所建树
承担课题
主持国家自然科学基金研究课题三项。两项已经分别于 2002 年年底和 2005 年年底结题,一项在研。
主持教育部国家理科基地创建名牌课程基金研究课题一项:数学物理方法教学改革与教学研究。2000年起,仍在研。
发表论文
国际刊物
[1] Qiong-gui Lin and Guang-jiong Ni,Covariant Hamiltonian formulation of the massive superparticle,J. Phys. G 15 (1989) 1163-1173.
[2] Qiong-gui Lin,Yu-liang Liu and Guang-jiong Ni,NSR open-superstring field theory at finite temperature,Phys. Rev. D 39 (1989) 3713-3716.
[3] Qiong-gui Lin and Guang-jiong Ni,BRST quantization of the extended supersymmetric spinning particle,Phys. Rev. D 41 (1990) 1307-1311.
[4] Qiong-gui Lin and Guang-jiong Ni,Dirac quantization of Chern-Simons theories in (2+1) dimensions,Class. Quantum Grav. 7 (1990) 1261-1270.
[5] Qiong-gui Lin and Guang-jiong Ni,Gupta-Bleuler quantization of the chiral boson,Phys. Lett. B 254 (1991) 435-438.
[6] Qiong-gui Lin and Guang-jiong Ni,Monopole mass evaluated by an analytic approximation,Commun. Theor. Phys. 16 (1991) 319-324.
[7] Qiong-gui Lin and Guang-jiong Ni,Approximate method for Nielsen-Olesen vortices,Commun. Theor. Phys. 18 (1992) 357-362.
[8] Qiong-gui Lin,Jackiw-Pi solitons in external electromagnetic field,Phys. Rev. D 48 (1993) 1852-1859.
[9] Qiong-gui Lin,Conformally symmetric nonlinear Schroedinger equation in (1+1) dimensions,J. Phys. A 28 (1995) 231-253.
[10] Qiong-gui Lin,Levinson theorem in two dimensions,Phys. Rev. A 56 (1997) 1938-1944.
[11] Qiong-gui Lin,Nonlocal scalar electrodynamics from Chern-Simons theory,Commun. Theor. Phys. 28 (1997) 225-230.
[12] Qiong-gui Lin,Scattering by a Coulomb field in two dimensions,Am. J. Phys. 65 (1997) 1007-1009.
[13] Qiong-gui Lin,Nonlocal electrodynamics in 2+1 dimensions from Chern-Simons theory,Commun. Theor. Phys. 30 (1998) 249-256.
[14] Qiong-gui Lin,Levinson theorem for Dirac particles in two dimensions,Phys. Rev. A 57 (1998) 3478-3488.
[15] Qiong-gui Lin,Electron-positron pair creation in a vacuum by an electromagnetic field in 3+1 and lower dimensions,J. Phys. G 25 (1999) 17-26.
[16] Qiong-gui Lin,Quantum-mechanical model for particles carrying electric charge and magnetic flux in two dimensions,Phys. Rev. A 59 (1999) 3228-3235.
[17] Qiong-gui Lin,Pair creation of neutral particles in a vacuum by external electromagnetic fields in 2+1 dimensions,J. Phys. G 25 (1999) 1793-1795.
[18] Qiong-gui Lin,Scattering of ralativistic particles by a Coulomb field in two dimensions,Phys. Lett. A 260 (1999) 17-23.
[19] Qiong-gui Lin,Levinson theorem for Dirac particles in one dimension,Euro. Phys. J. D 7 (1999) 515-524.
[20] Qiong-gui Lin,Bound states of neutral particles in external electric fields,Phys. Rev. A 61 (2000) 022101.
[21] Qiong-gui Lin,Vacuum polarization for neutral particles in 2+1 dimensions,J. Phys. G 26 (2000)L17-L21.
[22] Qiong-gui Lin,Scattering of relativistic particles with Aharonov-Bohm-Coulomb interaction in two dimensions,J. Phys. A 33 (2000) 5049-5057.
[23] Qiong-gui Lin,On the partial wave amplitude of Coulomb scattering in three dimensions,Am. J. Phys. 68 (2000) 1056-1057.
[24] Qiong-gui Lin,Charged particles in a rotating magnetic field,Phys. Rev. A 63 (2001) 012108.
[25] Qiong-gui Lin,Dirac particles in a rotating magnetic field,J. Phys. A 34 (2001) 1903-1909.
[26] Qiong-gui Lin,Scattering by a contact potential in three and lower dimensions,J. Phys. A 34 (2001) 1911-1918.
[27] Qiong-gui Lin,Geometric phases for neutral and charged particles in a time-dependent magnetic field,J. Phys. A 35 (2002) 377-391.
[28] Qiong-Gui Lin,Geometric phases for wave packets in a uniform magnetic field,Phys. Lett. A 298 (2002) 67-72.
[29] Qiong-Gui Lin,Wave packets of a harmonic oscillator with various degrees of rigidity,Chin. J. Phys. (Taipei) 40 (2002) 387-394.
[30] Qiong-Gui Lin,Anisotropic harmonic oscillator in a static electromagnetic field,Commun. Theor. Phys. 38 (2002) 667-674.
[31] Qiong-Gui Lin,Time evolution,cyclic solutions and geometric phases for general spin in an arbitrarily varying magnetic field,J. Phys. A 36 (2003) 6799-6806.
免责声明
本文章来源为院校研究生官网,如对稿件内容有疑问,请与院校招生办联系。学分高考转载出于非商业性的教育和科研之目的,不代表赞同其观点或证实其内容的真实性。如转载稿涉及版权等问题,请来函136311265@qq.com联系修改或删除。
微信扫码关注公众号
获取更多考试热门资料