福州大学电气工程与自动化学院、福州大学福建省医疗器械和医药技术重点实验室的研究人员陈盛勤、李玉榕等,在2018年第3期《电气技术》杂志上撰文,为帮助肢体功能障碍患者上肢运动功能的康复和重建,本文设计针对肘关节运动康复的功能性电刺激(Functional Electrical Stimulation,FES)系统。
首先应用动态神经网络建立电刺激下肘关节运动的模型。根据模型的非线性与肘关节运动轨迹的重复性,采用迭代学习控制(IterativeLearning Control, ILC)算法设计FES系统的控制器,实现肘关节角度精确控制的FES系统。经过10次迭代控制,肘关节实际运动轨迹与期望轨迹之间的最大误差为0.438°,相对平均误差为0.32%,均方根误差为0.245°。
结果表明所设计的基于ILC算法的FES系统能够实现肘关节运动功能性电刺激的精确控制,对帮助肘关节运动康复的FES系统研究具有一定的指导意义。
肢体功能障碍患者由于大脑或神经系统损伤导致肢体无法受思维控制完成期望动作。这严重影响患者的日常生活,给家庭和社会带来严重负担。造成肢体功能障碍的两大疾病脑卒中与脊髓损伤,随着人口老龄化以及交通事故的增多,发病率不断上升。
根据我国2016年脑卒中流行病学报告显示,每年新增脑卒中患者200万人,死亡人数165万,存活的患者600 ~700万人中有四分之三的患者有不同程度的肢体功能障碍[1, 2]。我国每年脊髓损伤的人数已经达到数十万人。目前没有关于全球患病率的可靠估计,但每年的全球发生率估计为每百万人40至80例[3]。对于如此庞大的肢体功能障碍病人群体,帮助他们肢体运动功能康复的研究是十分有意义的。
在肢体运动功能中,上肢功能包括取物、抓物和操作物体,负担着进食、穿衣、洗漱等基本生活技能。上肢运动功能的重建是肢体功能障碍患者实现生活自理的关键。肘关节的康复对整个上肢运动功能的康复是至关重要的。功能性电刺激(Functional Electrical Stimulation,FES)是治疗肢体功能障碍患者四肢运动功能不全的重要康复治疗技术之一,1961年由美国医生Liberson首次提出,并定义为“对肌肉提供电流刺激,在刺激的瞬时产生肌肉收缩,达到移动、抓握或其他肌肉动作[4]。
FES技术在改善肢体功能障碍患者的运动功能起到重要作用,经过实验研究与临床治疗验证,FES治疗能有效的提高患者的运动表现[5, 6]。设计针对肘关节康复训练的FES系统,对于帮助肢体功能障碍患者的上肢运动功能康复具有重要意义。
针对人体关节运动控制的FES系统研究,国内外已有许多学者投入当中。FES系统的发展是从简单的开环系统结构到闭环系统结构。功能性电刺激开环控制方式,指的是通常通过外部手动控制开关,或者通过压力、加速度等传感器触发FES系统启动或停止[7]。例如Nathan等人研发的HandMaster系统,其通过外部开关调节和控制刺激电流来帮助患者实现手部抓握功能[8]。Shimada等人使用加速度传感器检测足下垂患者的步态,用加速度信号触发电刺激仪器产生指定刺激电流来校正足下垂患者的步态[9]。
在这些开环控制系统中,功能性电刺激输出的刺激参数,包括刺激幅值、频率、波形等是固定的,刺激参数依赖于康复指导师的经验设置,采用固定的脉冲序列进行刺激,这样的方式要么产生多余的刺激量导致肌肉疲劳,要么刺激量不足难以使肌肉产生相应的收缩以完成规定的训练运动。可见开环控制的功能性电刺激系统难以达到理想的康复效果。
为实现刺激量的精确调节,进而产生了功能性电刺激系统的闭环控制方式,包括测量患者康复过程中的轨迹、角度、角速度、关节力矩等参数构成闭环控制系统,实现系统输出参数的精确控制。例如学者QiuShuang设计的针对膝关节控制的FES系统,其利用角度反馈,使用基于神经网络与遗传算法的PID算法进行控制,实现闭环控制的FES系统[10]。
Lew等人使用一组陀螺仪用于检测手臂运动作,将位置信息反馈,实现闭环控制的FES系统,且使患者实现取物、放物等基本功能任务[11]。相比于国外,国内对FES系统的研究起步较晚发展较慢,国内更多的学者对下肢的FES系统进行研究,主要在步态校正、膝关节运动、人体站立、以及闭环的FES脚踏车康复系统等研究领域,对上肢的康复训练的FES系统研究相对较少。
控制算法的应用更多的采用传统的PID控制算法与改进的PID控制算法。而肢体康复训练动作常具有重复性,ILC算法相比于PID控制算法更适用于控制重复轨迹跟踪的系统,且ILC算法具有一定的学习能力,抵抗模型参数改变和系统外部噪声的抗干扰能力更强[12, 13]。
本文针对肘关节在电刺激下的运动特性,采用神经网络的方法建立电刺激量与肘关节运动角度的模型关系。结合所建模型,用肘关节角度信号进行反馈,用ILC算法控制电刺激量,实现电刺激肘关节运动的闭环控制FES系统。
1.1 建模方法
1.2实验结果与模型测试
2.1 ILC理论与系统设计
2.2系统仿真结果与讨论
2.3 系统抗模型扰动分析
本文根据肘关节在电刺激下矢状面的运动特性,完成肘关节运动控制的FES系统。建立电刺激量与肘关节运动角度的神经网络模型,结合所建模型设计出ILC算法控制的FES系统。
通过MATLAB仿真分析得出ILC方法控制的FES系统,最终迭代次的期望轨迹与实际轨迹之间的最大误差为0.438°,对平均误差为0.32%,均方根误差为0.245°。通过模型扰动分析PID系统与ILC系统,得出ILC方法控制下的FES系统具有更强的抗干扰能力,性能指标优于PID方法控制下的FES系统。
本研究通过建立模型来进行仿真的,而实际肘关节的电刺激运动特性与所建模型还是有所不同的。未来研究需要以实际人体肘关节为对象,使用PID与 ILC方法控制的FES系统,进行期望轨迹跟踪实验,完善使所设计的FES系统,使其能够切实帮助肢体功能障碍病人进行康复训练。