首先,回顾一下线性代数的主要构成有哪些,它由块知识点构成:行列式、矩阵、向量、线性方程组、特征值特征向量、二次型。基于以上几个板块,会发现线性代数有以下几个特点:
第 一,概念较为抽象。
这是复习之初,考生们面临的道坎。就比如说,矩阵的秩,即矩阵非零子式的较高阶数,这是一个嵌套的定义,想要理解这个概念,我们需要把握住什么叫做子式。其次,还要做到会求矩阵的秩,对于具体的矩阵,我们能够根据定义求出来,但在考试中更侧重于抽象矩阵秩的求法,这使得很多考生无从下手,原因在于秩的概念根本没有把握住。
第 二,概念多,性质多,定理多。
例如有关矩阵的,就有相似矩阵、合同矩阵、正定矩阵、正交矩阵、伴随矩阵等.在向量这部分,向量组线性相关的性质就10来个。知识点的琐碎就在无形之中增加了各位考生的记忆压力,所以大家的复习的过程中要留意这一点。
第三,知识点联系紧密,对知识点的考察偏向综合性。
就拿上面讲到的秩这个概念,对于具体的矩阵求秩,我们通常是对矩阵作初等行变换化阶梯型,根据阶梯型中非零行的个数来求;对于抽象的,一方面可以利用定义来判定,另外如果与向量结合,还可以由向量的相关性及向量组的秩来判定,如果与线性方程组结合,由基础解系所含向量的个数也可以帮助判定,还可以借助矩阵(方阵)的非零特征值个数等方法来判定。
第四,计算量大。
线性代数的另外一个比较明显的特点就是计算量较大,这里通常是体现在解答题当中,对于选择题和填空题这种小题来说,计算量一般适中,如果同学们发现在做题的过程中,在小题的时间花费比较大,那极有可能是同学们的解题思路出了问题。
第五,推理证明
线性代数还会考察学生的推理论证能力,但是从实际的得分可以看出很多考生这方面的能力较为欠缺,特别是处理应用题和证明题的能力。这方面的能力需要同学们自己去总结常考题型以及相应的解题思路和方法,有意识的来锻炼自己这方面的能力,避免在考试中失分。
您咨询的是成都文登考研机构为您整理关于考研的详情页面,成都文登考研机构为您提供更专业的服务,从需求出发提供良好的保障。