柯西不等式公式:
√(a^2+b^2)≥(c^2+d^2)。柯西不等式是由柯西在研究过程中发现的一个不等式,其在解决不等式证明的有关问题中有着十分广泛的应用,所以在高等数学提升中与研究中非常重要,是高等数学研究内容之一。
一般地,用纯粹的大于号“>”、小于号“,通常不等式中的数是实数,字母也代表实数,不等式的一般形式为F(x,y,…,z)≤G(x,y,…,z)(其中不等号也可以为中某一个),两边的解析式的公共定义域称为不等式的定义域,不等式既可以表达一个命题,也可以表示一个问题。
相关信息:
柯西不等式是由柯西在研究过程中发现的一个不等式,其在解决不等式证明的有关问题中有着十分广泛的应用,所以在高等数学提升中与研究中非常重要,是高等数学研究内容之一。
据说,法国科学院《会刊》创刊的时候,由于柯西的作品实在太多,以致于科学院要负担很大的印刷费用,超出科学院的预算,因此,科学院后来规定论文最长的只能够到四页。柯西较长的论文因而只得投稿到其它地方。
1、二维形式:
(a^2+b^2)(c^2 + d^2)≥(ac+bd)^2
等号成立条件:ad=bc
2、三角形式:
√(a^2+b^2)+√(c^2+d^2)≥√[(a-c)^2+(b-d)^2]
等号成立条件:ad=bc
3、向量形式:
|α||β|≥|α·β|,α=(a1,a2,…,an),β=(b1,b2,…,bn)(n∈N,n≥2)
等号成立条件:β为零向量,或α=λβ(λ∈R)。
4、一般形式:
(∑ai^2)(∑bi^2) ≥ (∑ai·bi)^2
等号成立条件:a1:b1=a2:b2=…=an:bn,或ai、bi均为零。
扩展资料:
不等式的特殊性质有以下三种:
①不等式性质1:不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向不变;
②不等式性质2:不等式的两边同时乘(或除以)同一个正数,不等号的方向不变。
常用定理
①不等式F(x)< G(x)与不等式 G(x)>F(x)同解。
②如果不等式F(x) < G(x)的定义域被解析式H( x )的定义域所包含,那么不等式 F(x)<G(x)与不等式F(x)+H(x)<G(x)+H(x)同解。
③如果不等式F(x)<G(x) 的定义域被解析式H(x)的定义域所包含,并且H(x)>0,那么不等式F(x)<G(x)与不等式H(x)F(x)<H( x )G(x) 同解。
④不等式F(x)G(x)>0与不等式同解;不等式F(x)G(x)<0与不等式同解。
排序不等式:
对于两组有序的实数x1≤x2≤…≤xn,y1≤y2≤…≤yn,设yi1,yi2,…,yin是后一组的任意一个排列,记S=x1yn+x2yn-1+…+xny1,M=x1yi1+x2yi2+…+xnyin,L=x1y1+x2y2+…+xnyn,那么恒有S≤M≤L。
当且仅当x1=x2=……=xn且y1=y2=……yn时,等号成立。
参考资料来源:百度百科-柯西不等式
1、二维形式:
(a^2+b^2)(c^2 + d^2)≥(ac+bd)^2
等号成立条件:ad=bc
2、三角形式:
√(a^2+b^2)+√(c^2+d^2)≥√[(a-c)^2+(b-d)^2]
等号成立条件:ad=bc
3、向量形式:
|α||β|≥|α·β|,α=(a1,a2,…,an),β=(b1,b2,…,bn)(n∈N,n≥2)
等号成立条件:β为零向量,或α=λβ(λ∈R)。
4、一般形式:
(∑ai^2)(∑bi^2)≥(∑ai·bi)^2
等号成立条件:a1:b1=a2:b2=…=an:bn,或ai、bi均为零。
1.柯西不等式的特点:左边是平方和的积,简记为方和积,右边是乘积和的平方。
2.柯西不等式的直接应用。
例:已知x,y满足x+3y=4,求4x2+y2的最小值。
分析:
方法一,大家看到该题后的直接想法可能是换元,把关于x,y的双元变量变换为关于x或y的一元变量问题,再借助于二次函数的思想可以解决。
方法二,由于其结构特征与柯西不等式的形式非常相似。
柯西不等式是由大数学家柯西(Cauchy)在研究数学分析中的“流数”问题时得到的。柯西不等式是由柯西在研究过程中发现的一个不等式,其在解决不等式证明的有关问题中有着十分广泛的应用,所以在高等数学提升中与研究中非常重要,是高等数学研究内容之一。
1、二维形式
(a^2+b^2)(c^2 + d^2)≥(ac+bd)^2。
等号成立条件:ad=bc。
2、三角形式
√(a^2+b^2)+√(c^2+d^2)≥√[(a-c)^2+(b-d)^2]。
等号成立条件:ad=bc。
3、向量形式
|α||β|≥|α·β|,α=(a1,a2,…,an),β=(b1,b2,…,bn)(n∈N,n≥2)。
等号成立条件:β为零向量,或α=λβ(λ∈R)。
4、一般形式
(∑ai^2)(∑bi^2) ≥ (∑ai·bi)^2。
等号成立条件:a1:b1=a2:b2=…=an:bn,或ai、bi均为零。
柯西不等式的一般形式是:(a^2+b^2)(c^2+d^2)≥(ac+bd)^2(当且仅当a:c=b:d时取等号)。
在数学中,柯西不等式(Cauchy-Schwarz inequality)在线性代数、数学分析、概率论等领域中都是非常有用的不等式,它被认为是数学中最重要的不等式之一。
柯西不等式基本题型分别是:
1、二维形式:
(a^2+b^2)(c^2 + d^2)≥(ac+bd)^2
等号成立条件:ad=bc
2、三角形式:
√(a^2+b^2)+√(c^2+d^2)≥√[(a-c)^2+(b-d)^2]
等号成立条件:ad=bc
3、一般形式:
(∑ai^2)(∑bi^2) ≥ (∑ai·bi)^2
等号成立条件:a1:b1=a2:b2=…=an:bn,或ai、bi均为零。
柯西不等式是由大数学家柯西在研究数学分析中的“流数”问题时得到的。但从历史的角度讲,该不等式应当称为柯西-布尼亚科夫斯基-施瓦茨不等式,因为,正是后两位数学家彼此独立地在积分学中推而广之,才将这一不等式应用到近乎完善的地步。
柯西不等式的形式柯西的简要介绍柯西是法国数学家、力学家。27岁成为巴黎综合工科学校教授,并当选为法国科学院 院士. 他的一生获得了多项重要的成果。柯西不等式便是他的一个非常重要的成果。除此之外他在数学的很多领域都进行了深刻的研究,其中包括数论、代数、数学分析和微分方程等,为数学的发展做出的突出的贡献。柯西对高等数学的贡献包括:无穷级数的敛散性,实变和复变函数论,微分方程,行列式,概率和数理方程等方面的研究。目前我们所学的极限和连续性的定义,导数的定义,以及微分、定积分用无穷多个无穷小的和的极限定义,实质上都是柯西给出的。数学中很多定理都冠以柯西的名字,如柯西收敛原理、柯西中值定理、柯西积分不等式、柯西判别法、柯西方程等等。
柯西不等式的一般形式是:(a^2+b^2)(c^2+d^2)≥(ac+bd)^2(当且仅当a:c=b:d时取等号)。
在数学中,柯西不等式(Cauchy-Schwarz inequality)在线性代数、数学分析、概率论等领域中都是非常有用的不等式,它被认为是数学中最重要的不等式之一。
柯西简介
柯西(Cauchy Augustin-Louis,1789-1857),法国数学家,1789年8月21日生于巴黎,他的父亲路易·弗朗索瓦·柯西是法国波旁王朝的官员,在法国动荡的政治漩涡中一直担任公职。由于家庭的原因,柯西本人属于拥护波旁王朝的正统派,是一位虔诚的天主教徒。
他在纯数学和应用数学的功底是相当深厚的,很多数学的定理、公式都以他的名字来称呼,如柯西不等式、柯西积分公式。
在数学写作上,他被认为在数量上仅次于欧拉的人,他一生一共著作了789篇论文和几本书,以《分析教程》(1821年)和《关于定积分理论的报告》(1827年)最为著名。不过他并不是所有的创作都质量很高,因此他还曾被人批评“高产而轻率”,这点倒是与数学王子(高斯)相反。
据说,法国科学院《会刊》创刊的时候,由于柯西的作品实在太多,以致于科学院要负担很大的印刷费用,超出科学院的预算,因此,科学院后来规定论文最长的只能够到四页。柯西较长的论文因而只得投稿到其它地方。