数学高考的题型有三种:
一是选择题。选择题的解题要求是选判结果、不要过程。就是说,只需判断选择备选答案的对错,而省去了解题思路的探索、解题策略的制定、解题工具的选择以及解题过程的实施等细节,只判结果、不要过程。由此提出的解题要求是:选择题的解答一定要符合“快、准、巧”的要求,较忌讳的是“小题大做”。一道选择题的解答时间只有三分钟左右,超出三分钟时间即使能够得出正确答案也是罔然。因此仅仅停留在会解能解的层次上是远远不够的,选择题的答题要求是必须“、准确、巧妙”的选判正确答案,而千万别把小题弄成大题解答。
二是填空题。
填空题的解题要求是只要结果、不要过程,而较常见的错误是答案不够“完整、严密”。
三是解答题。
解答题的特点是综合性,你不能把什么题都拿来作为解答题。解答题的范围类型目前主要包括:,平面向量、三角函数;第二,概率(分布列)与统计(直方图);第三,空间向量、立体几何;第四,函数、导数综合;第五,解析几何;第六,数列、或不等式与函数或解析几何的综合。有两个新的命题趋势在被不少同学因各种原因或理由而忽视掉了。具体说:一是空间向量的综合运用,二是函数导数的综合运用。有些同学没有把这两部分内容全面深入地渗透到原有各个部分内容的解题中,而是把这两部分内容仍然孤立地与原有内容隔离开来。要清醒地认识到,空间向量和函数导数在原有知识内容的基础上,给我们带来了崭新的简洁实用的解题工具,理应引起我们的高度关注。解答题的解题要求是:解题思路清晰(为此可以适当跳步而保持思路的完整清晰),解题过程切忌过于琐碎;选择合适的解题工具;制定合理的解题策略;选择简洁的解题方法。