学分高考 精选问答

对数函数的性质

发布时间: 2025-04-30 17:08
精选回答

定点:对数函数的函数图像恒过定点(1,0);单调性:a大于1时,在定义域上为单调增函数;定义域:对数函数y=log ax的定义域是{x丨x大于0};奇偶性:非奇非偶函数;周期性:不是周期函数;对称性:无;最值:无;零点:x=1。

对数函数的常用简略表达方式:log(a)(b^n)=nlog(a)(b)(a为底数)(n属于R)。lg(b)=log(10)(b)(10为底数)。ln(b)=log(e)(b)(e为底数)。对数与指数之间的关系:当a大于0,a不等于1时,a的X次方=N等价于log(a)N=x。log(a^k)(M^n)=(n/k)log(a)(M)(n属于R)。

对数函数的图形只不过是指数函数的图形的关于直线y=x的对称图形,因为它们互为反函数。对数函数的图形特点:对数函数的定义域为大于0的实数集合。对数函数的值域为全部实数集合。函数图像总是通过(1,0)点。a大于1时,为单调增函数,并且上凸;a大于0小于1时,函数为单调减函数,并且下凹。

运算性质:一般地,如果a(a大于0,且a≠1)的b次幂等于N,那么数b叫做以a为底N的对数,记作logaN=b,其中a叫做对数的底数,N叫做真数。

对数函数的性质是什么?

对数函数的性质是:

对数函数是以幂(真数)为自变量,指数为因变量,底数为常量的函数。对数函数是6类基本初等函数之一。其中对数的定义:如果ax=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作x=logaN,读作以a为底N的对数,其中a叫做对数的底数,N叫做真数。

一般地,函数y=logaX(a>0,且a≠1)叫做对数函数,也就是说以幂(真数)为自变量,指数为因变量,底数为常量的函数,叫对数函数。

对数函数与质数函数的关系:

对数函数的一般形式为 y=㏒ax,它实际上就是指数函数的反函数(图象关于直线y=x对称的两函数互为反函数),可表示为x=ay。

因此指数函数里对于a的规定(a>0且a≠1),右图给出对于不同大小a所表示的函数图形:关于X轴对称、当a>1时,a越大,图像越靠近x轴、当0<a<1时,a越小,图像越靠近x轴。

可以看到,对数函数的图形只不过是指数函数的图形的关于直线y=x的对称图形,因为它们互为反函数。

对数函数有什么性质?

对数函数主要性质:

定义域求解:对数函数y=logax 的定义域是{x 丨x>0},但如果遇到对数型复合函数的定义域的求解,除了要注意大于0以外,还应注意底数大于0且不等于1,如求函数y=logx(2x-1)的定义域,需同时满足x>0且x≠1。

和2x-1>0 ,得到x>1/2且x≠1,即其定义域为 {x 丨x>1/2且x≠1}。

值域:实数集R,显然对数函数无界。

定点:对数函数的函数图像恒过定点(1,0)。

单调性:a>1时,在定义域上为单调增函数。

0<a<1时,在定义域上为单调减函数。

奇偶性:非奇非偶函数

周期性:不是周期函数

对称性:无

最值:无

零点:x=1

注意:负数和0没有对数。

两句经典话:底真同对数正,底真异对数负。解释如下:

也就是说:若y=logab (其中a>0,a≠1,b>0)

当0<a<1, 0<b<1时,y=logab>0。

当a>1, b>1时,y=logab>0。

当0<a<1, b>1时,y=logab<0。

当a>1, 0<b<1时,y=logab<0。

对数函数的性质是什么呢

对数函数的性质是:

值域:实数集R,显然对数函数无界;

定点:对数函数的函数图像恒过定点(1,0);

单调性:a>1时,在定义域上为单调增函数;

0<a<1时,在定义域上为单调减函数;

奇偶性:非奇非偶函数

周期性:不是周期函数

对称性:无

最值:无

零点:x=1

注意:负数和0没有对数。

注意:

对数函数(Logarithmic Function)是以幂(真数)为自变量,指数为因变量,底数为常量的函数。

对数函数是6类基本初等函数之一。其中对数的定义:

如果ax=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作x=logaN,读作以a为底N的对数,其中a叫做对数的底数,N叫做真数。

一般地,函数y=logaX(a>0,且a≠1)叫做对数函数,也就是说以幂(真数)为自变量,指数为因变量,底数为常量的函数,叫对数函数。

其中x是自变量,函数的定义域是(0,+∞),即x>0。它实际上就是指数函数的反函数,可表示为x=ay。因此指数函数里对于a的规定,同样适用于对数函数。

对数函数性质

对数函数性质:

值域:实数集R,显然对数函数无界;

定点:对数函数的函数图像恒过定点(1,0);

单调性:a>1时,在定义域上为单调增函数;

0<a<1时,在定义域上为单调减函数;

奇偶性:非奇非偶函数

周期性:不是周期函数

对称性:无

最值:无

零点:x=1

扩展资料:

对数函数的运算性质

一般地,如果a(a>0,且a≠1)的b次幂等于N,那么数b叫做以a为底N的对数,记作logaN=b,其中a叫做对数的底数,N叫做真数。

底数则要>0且≠1 真数>0

并且,在比较两个函数值时:

如果底数一样,真数越大,函数值越大。(a>1时)

如果底数一样,真数越小,函数值越大。(0<a<1时)

参考资料来源:百度百科-对数函数

温馨提示:
本答案【对数函数的性质】由作者张张知识提供。该文观点仅代表作者本人,学分高考系信息发布平台,仅提供信息存储空间服务,若存在侵权问题,请及时联系管理员或作者进行删除。
我们采用的作品包括内容和图片部分来源于网络用户投稿,我们不确定投稿用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的权利,请联系我站将及时删除。
内容侵权、违法和不良信息举报
Copyright @ 2024 学分高考 All Rights Reserved 版权所有. 湘ICP备17021685号