学分高考 考研

2022考研数学复习指导:概率论分析方法之回归分析

发布时间: 2022-12-27 14:09:24
2022考研数学复习指导:概率论分析方法之回归分析

2022考研的考生现在已经进入基础备考阶段啦!一个良好的起跑点对于后期的复习备考至关重要,考研数学栏目为各位考生提供相关考研备战常识与资料,希望能对各位2022考研的考生有所帮助,一起来看哦。

回归分析

1.直线回归:如果回归分析中的残差服从正态分布(大样本时无需正态性),残差与自变量无趋势变化,则直线回归(单个自变量的线性回归,称为简单回归),否则应作适当的变换,使其满足上述条件。

2.多重线性回归:应变量(Y)为连续型变量(即计量资料),自变量(X1,X2,…,Xp)可以为连续型变量、有序分类变量或二分类变量。如果回归分析中的残差服从正态分布(大样本时无需正态性),残差与自变量无趋势变化,可以作多重线性回归。

1)观察性研究:可以用逐步线性回归寻找(拟)主要的影响因素

2)实验性研究:在保持主要研究因素变量(干预变量)外,可以适当地引入一些其它可能的混杂因素变量,以校正这些混杂因素对结果的混杂作用

3.二分类的Logistic回归:应变量为二分类变量,自变量(X1,X2,…,Xp)可以为连续型变量、有序分类变量或二分类变量。

1)非配对的情况:用非条件Logistic回归

(1)观察性研究:可以用逐步线性回归寻找(拟)主要的影响因素

(2)实验性研究:在保持主要研究因素变量(干预变量)外,可以适当地引入一些其它可能的混杂因素变量,以校正这些混杂因素对结果的混杂作用

2)配对的情况:用条件Logistic回归

(1)观察性研究:可以用逐步线性回归寻找(拟)主要的影响因素

(2)实验性研究:在保持主要研究因素变量(干预变量)外,可以适当地引入一些其它可能的混杂因素变量,以校正这些混杂因素对结果的混杂作用

4.有序多分类有序的Logistic回归:应变量为有序多分类变量,自变量(X1,X2,…,Xp)可以为连续型变量、有序分类变量或二分类变量。

1)观察性研究:可以用逐步线性回归寻找(拟)主要的影响因素

2)实验性研究:在保持主要研究因素变量(干预变量)外,可以适当地引入一些其它可能的混杂因素变量,以校正这些混杂因素对结果的混杂作用

5.无序多分类有序的Logistic回归:应变量为无序多分类变量,自变量(X1,X2,…,Xp)可以为连续型变量、有序分类变量或二分类变量。

1)观察性研究:可以用逐步线性回归寻找(拟)主要的影响因素

2)实验性研究:在保持主要研究因素变量(干预变量)外,可以适当地引入一些其它可能的混杂因素变量,以校正这些混杂因素对结果的混杂作用

以上就是考研频道小编整理的“2022考研数学复习指导:概率论分析方法之回归分析”相关介绍,数学这么严谨的学科,对于基础的要求十分严格,所以在考研数学备考基础阶段,同学们一定要打牢基础,切勿走入误区!如果您还想了解考研数学的其他问题,欢迎关注考研数学频道。

.xqy_container .xqy_core .xqy_core_main .xqy_core_text{height:auto !important;}2022考研数学复习指导:概率论分析方法之回归分析
温馨提示:
本文【2022考研数学复习指导:概率论分析方法之回归分析】由作者教培参考提供。该文观点仅代表作者本人,学分高考系信息发布平台,仅提供信息存储空间服务,若存在侵权问题,请及时联系管理员或作者进行删除。
我们采用的作品包括内容和图片部分来源于网络用户投稿,我们不确定投稿用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的权利,请联系我站将及时删除。
内容侵权、违法和不良信息举报
Copyright @ 2024 学分高考 All Rights Reserved 版权所有. 湘ICP备17021685号