学分高考 考研

2023年考研数学复习指导:证明题

发布时间: 2023-02-25 11:16:02
2023年考研数学复习指导:证明题

本文为正在准备考研的同学们整理归纳了2023年考研数学复习指导:证明题,希望对大家复习有所帮助。

2023年考研数学复习指导:证明题

☆题目篇☆

考试难题一般出现在高等数学,对高等数学一定要抓住重难点进行复习。高等数学题目中比较困难的是证明题,在整个高等数学,容易出证明题的地方如下:

数列极限的证明

数列极限的证明是数一、二的重点,特别是数二最近几年考的非常频繁,已经考过好几次大的证明题,一般大题中涉及到数列极限的证明,用到的方法是单调有界准则。

微分中值定理的相关证明

微分中值定理的证明题历来是考研的重难点,其考试特点是综合性强,涉及到知识面广,涉及到中值的等式主要是三类定理:

1.零点定理和介质定理;

2.微分中值定理;

包括罗尔定理,拉格朗日中值定理,柯西中值定理和泰勒定理,其中泰勒定理是用来处理高阶导数的相关问题,考查频率底,所以以前两个定理为主。

3.微分中值定理

积分中值定理的作用是为了去掉积分符号。

在考查的时候,一般会把三类定理两两结合起来进行考查,所以要总结到现在为止,所考查的题型。

方程根的问题

包括方程根唯一和方程根的个数的讨论。

不等式的证明

定积分等式和不等式的证明

主要涉及的方法有微分学的方法:常数变异法;积分学的方法:换元法和分布积分法。

积分与路径无关的五个等价条件

这一部分是数一的考试重点,最近几年没设计到,所以要重点关注。

☆方法篇☆

以上是容易出证明题的地方,同学们在复习的时候重点归纳这类题目的解法。那么,遇到这类的证明题,我们应该用什么方法解题呢?

结合几何意义记住基本原理

重要的定理主要包括零点存在定理、中值定理、泰勒公式、极限存在的两个准则等基本原理,包括条件及结论。

知道基本原理是证明的基础,知道的程度(即就是对定理理解的深入程度)不同会导致不同的推理能力。如2006年数学一真题第16题(1)是证明极限的存在性并求极限。只要证明了极限存在,求值是很容易的,但是如果没有证明第一步,即使求出了极限值也是不能得分的。

因为数学推理是环环相扣的,如果第一步未得到结论,那么第二步就是空中楼阁。这个题目非常简单,只用了极限存在的两个准则之一:单调有界数列必有极限。只要知道这个准则,该问题就能轻松解决,因为对于该题中的数列来说,“单调性”与“有界性”都是很好验证的。像这样直接可以利用基本原理的证明题并不是很多,更多的是要用到第二步。

借助几何意义寻求证明思路

一个证明题,大多时候是能用其几何意义来正确解释的,当然最为基础的是要正确理解题目文字的含义。如2007年数学一第19题是一个关于中值定理的证明题,可以在直角坐标系中画出满足题设条件的函数草图,再联系结论能够发现:两个函数除两个端点外还有一个函数值相等的点,那就是两个函数分别取最大值的点(正确审题:两个函数取得最大值的点不一定是同一个点)之间的一个点。这样很容易想到辅助函数F(x)=f(x)-g(x)有三个零点,两次应用罗尔中值定理就能得到所证结论。

再如2005年数学一第18题(1)是关于零点存在定理的证明题,只要在直角坐标系中结合所给条件作出函数y=f(x)及y=1-x在[0,1]上的图形就立刻能看到两个函数图形有交点,这就是所证结论,重要的是写出推理过程。从图形也应该看到两函数在两个端点处大小关系恰好相反,也就是差函数在两个端点的值是异号的,零点存在定理保证了区间内有零点,这就证得所需结果。如果第二步实在无法完满解决问题的话,转第三步。

逆推法

从结论出发寻求证明方法。如2004年第15题是不等式证明题,该题只要应用不等式证明的一般步骤就能解决问题:即从结论出发构造函数,利用函数的单调性推出结论。

在判定函数的单调性时需借助导数符号与单调性之间的关系,正常情况只需一阶导的符号就可判断函数的单调性,非正常情况却出现的更多(这里所举出的例子就属非正常情况),这时需先用二阶导数的符号判定一阶导数的单调性,再用一阶导的符号判定原来函数的单调性,从而得所要证的结果。该题中可设F(x)=ln*x-ln*a-4(x-a)/e*,其中eF(a)就是所要证的不等式。

对于那些经常使用如上方法的考生来说,利用三步走就能轻松收获数学证明的12分,但对于从心理上就不自信能解决证明题的考生来说,却常常轻易丢失12分,后一部分同学请按“证明三步走”来建立自信心,以阻止考试分数的白白流失。

以上为“2023年考研数学复习指导:证明题”内容,祝大家考试顺利,取得优异的考试成绩。

.xqy_container .xqy_core .xqy_core_main .xqy_core_text{height:auto !important;}2023年考研数学复习指导:证明题
温馨提示:
本文【2023年考研数学复习指导:证明题】由作者教培参考提供。该文观点仅代表作者本人,学分高考系信息发布平台,仅提供信息存储空间服务,若存在侵权问题,请及时联系管理员或作者进行删除。
我们采用的作品包括内容和图片部分来源于网络用户投稿,我们不确定投稿用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的权利,请联系我站将及时删除。
内容侵权、违法和不良信息举报
Copyright @ 2024 学分高考 All Rights Reserved 版权所有. 湘ICP备17021685号