学分高考 小学学习 > 六年级

六年级奥数题|抽屉原理

发布时间: 2024-07-05 09:58:24

六年级奥数题|抽屉原理

六年级奥数专题解析:抽屉原理

【例1】一个小组共有13名同学,其中至少有2名同学同一个月过生日。为什么?

【分析】每年里共有12个月,任何一个人的生日,一定在其中的某一个月。如果把这12个月看成12个“抽屉”,把13名同学的生日看成13只“苹果”,把13只苹果放进12个抽屉里,一定有一个抽屉里至少放2个苹果,也就是说,至少有2名同学在同一个月过生日。

【例 2】任意4个自然数,其中至少有两个数的差是3的倍数。这是为什么?

【分析与解】首先我们要弄清这样一条规律:如果两个自然数除以3的余数相同,那么这两个自然数的差是3的倍数。而任何一个自然数被3除的余数,或者是0,或者是1,或者是2,根据这三种情况,可以把自然数分成3类,这3种类型就是我们要制造的3个“抽屉”。我们把4个数看作“苹果”,根据抽屉原理,必定有一个抽屉里至少有2个数。换句话说,4个自然数分成3类,至少有两个是同一类。既然是同一类,那么这两个数被3除的余数就一定相同。所以,任意4个自然数,至少有2个自然数的差是3的倍数。

【例3】有规格尺寸相同的5种颜色的袜子各15只混装在箱内,试问不论如何取,从箱中至少取出多少只就能保证有3双袜子(袜子无左、右之分)?

【分析与解】试想一下,从箱中取出6只、9只袜子,能配成3双袜子吗?回答是否定的。

按5种颜色制作5个抽屉,根据抽屉原理1,只要取出6只袜子就总有一只抽屉里装2只,这2只就可配成一双。拿走这一双,尚剩4只,如果再补进2只又成6只,再根据抽屉原理1,又可配成一双拿走。如果再补进2只,又可取得第3双。所以,至少要取6+2+2=10只袜子,就一定会配成3双。

思考:1.能用抽屉原理2,直接得到结果吗?

2.把题中的要求改为3双不同色袜子,至少应取出多少只?

3.把题中的要求改为3双同色袜子,又如何?

【例4】一个布袋中有35个同样大小的木球,其中白、黄、红三种颜色球各有10个,另外还有3个蓝色球、2个绿色球,试问一次至少取出多少个球,才能保证取出的球中至少有4个是同一颜色的球?

【分析与解】从最“不利”的取出情况入手。

最不利的情况是首先取出的5个球中,有3个是蓝色球、2个绿色球。

接下来,把白、黄、红三色看作三个抽屉,由于这三种颜色球相等均超过4个,所以,根据抽屉原理2,只要取出的球数多于(4-1)×3=9个,即至少应取出10个球,就可以保证取出的球至少有4个是同一抽屉(同一颜色)里的球。

故总共至少应取出10+5=15个球,才能符合要求。

思考:把题中要求改为4个不同色,或者是两两同色,情形又如何?

当我们遇到“判别具有某种事物的性质有没有,至少有几个”这样的问题时,想到它--抽屉原理,这是你的一条“决胜”之路。

 

温馨提示:
本文【六年级奥数题|抽屉原理】由作者教育有故事提供。该文观点仅代表作者本人,学分高考系信息发布平台,仅提供信息存储空间服务,若存在侵权问题,请及时联系管理员或作者进行删除。
我们采用的作品包括内容和图片部分来源于网络用户投稿,我们不确定投稿用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的权利,请联系我站将及时删除。
内容侵权、违法和不良信息举报
Copyright @ 2024 学分高考 All Rights Reserved 版权所有. 湘ICP备17021685号