学分高考 初中学习 > 初中数学题库

若自然数n+3与n+7都是质数,求n除以6的余数.

发布时间: 2024-07-08 11:01:39

题文

若自然数n+3与n+7都是质数,求n除以6的余数.

题型:未知 难度:其他题型

答案

不妨将n分成六类,n=6k,n=6k+1,…,n=6k+5,然后讨论.
当n=6k时,
n+3=6k+3=3(2k+1)与n+3为质数矛盾;
当n=6k+1时,
n+3=6k+4=2(3k+2)与n+3为质数矛盾;
当n=6k+2时,
n+7=6k+9=3(2k+3)与n+7为质数矛盾;
当n=6k+3时,
n+3=6k+6=6(k+1)与n+3为质数矛盾;
当n=6k+5时,
n+7=6k+12=6(k+2)与n+7为质数矛盾.
所以只有n=6k+4,即n除以6的余数为4.
故答案为:4.

解析

该题暂无解析

考点

据学分高考专家说,试题“若自然数n+3与n+7都是质数,求n除以.....”主要考查你对 [有理数定义及分类 ]考点的理解。

有理数定义及分类

有理数的定义:
有理数是整数和分数的统称,一切有理数都可以化成分数的形式。

有理数的分类:
(1)按有理数的定义:
                              正整数 
                 整数{     零 
                              负整数
有理数{     
                            正分数 
                分数{
                            负分数
 
(2)按有理数的性质分类: 
                           正整数  
               正数{ 
                           正分数
有理数{  零
                           负整数 
               负数{
                           负分数

温馨提示:
本文【若自然数n+3与n+7都是质数,求n除以6的余数.】由作者教育情报员提供。该文观点仅代表作者本人,学分高考系信息发布平台,仅提供信息存储空间服务,若存在侵权问题,请及时联系管理员或作者进行删除。
星·亮着
我们采用的作品包括内容和图片部分来源于网络用户投稿,我们不确定投稿用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的权利,请联系我站将及时删除。
内容侵权、违法和不良信息举报
Copyright @ 2024 学分高考 All Rights Reserved 版权所有. 湘ICP备17021685号