学分高考 初中学习 > 初中数学题库

对一个正整数作如下操作:如果是偶数则除以2,如果是奇数则加1,如此进行直到1时操作停止,求经过9次操作变为l的数有多少个?

发布时间: 2024-07-08 11:02:34

题文

对一个正整数作如下操作:如果是偶数则除以2,如果是奇数则加1,如此进行直到1时操作停止,求经过9次操作变为l的数有多少个?

题型:未知 难度:其他题型

答案

通过1次操作变为1的数为2,再经过一次操作变为2的数为4、1,即通过两次操作变为1的数为4、1,
再经过1次操作变为4的数有两个为3、8、2,即通过3次操作变为1的数有两个为3,8,…,
经过1、2、3、4、5…次操作变为1的数依次为1、2、3、5、8…,这即为斐波拉契数列,
后面的数依次为:13+8=21,21+13=34,34+21=55.
即经过9次操作变为1的数有55个.

解析

该题暂无解析

考点

据学分高考专家说,试题“对一个正整数作如下操作:如果是偶数则除以.....”主要考查你对 [有理数定义及分类 ]考点的理解。

有理数定义及分类

有理数的定义:
有理数是整数和分数的统称,一切有理数都可以化成分数的形式。

有理数的分类:
(1)按有理数的定义:
                              正整数 
                 整数{     零 
                              负整数
有理数{     
                            正分数 
                分数{
                            负分数
 
(2)按有理数的性质分类: 
                           正整数  
               正数{ 
                           正分数
有理数{  零
                           负整数 
               负数{
                           负分数

温馨提示:
本文【对一个正整数作如下操作:如果是偶数则除以2,如果是奇数则加1,如此进行直到1时操作停止,求经过9次操作变为l的数有多少个?】由作者教育身边事提供。该文观点仅代表作者本人,学分高考系信息发布平台,仅提供信息存储空间服务,若存在侵权问题,请及时联系管理员或作者进行删除。
我们采用的作品包括内容和图片部分来源于网络用户投稿,我们不确定投稿用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的权利,请联系我站将及时删除。
内容侵权、违法和不良信息举报
Copyright @ 2024 学分高考 All Rights Reserved 版权所有. 湘ICP备17021685号