一、平行四边形的定义、性质及判定
1.两组对边平行的四边形是平行四边形.
2.性质:(1)平行四边形的对边相等且平行;(2)平行四边形的对角相等,邻角互补;(3)平行四边形的对角线互相平分.
3.判定:(1)两组对边分别平行的四边形是平行四边形:(2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形;(4)两组对角分别相等的四边形是平行四边形;(5)对角线互相平分的四边形是平行四边形.
4.对称性:平行四边形是中心对称图形.
二、矩形的定义、性质及判定
1.定义:有一个角是直角的平行四边形叫做矩形.
2.性质:矩形的四个角都是直角,矩形的对角线相等.
3.判定:(1)有一个角是直角的平行四边形叫做矩形;(2)有三个角是直角的四边形是矩形;(3)两条对角线相等的平行四边形是矩形.
4.对称性:矩形是轴对称图形也是中心对称图形.
三、菱形的定义、性质及判定
1.定义:有一组邻边相等的平行四边形叫做菱形.
2.性质:(1)菱形的四条边都相等;(2)菱形的对角线互相垂直,并且每一条对角线平分一组对角;(3)菱形被两条对角线分成四个全等的直角三角形;(4)菱形的面积等于两条对角线长的积的一半:
3.判定:(1)有一组邻边相等的平行四边形叫做菱形;(2)四条边都相等的四边形是菱形;(3)对角线互相垂直的平行四边形是菱形.
4.对称性:菱形是轴对称图形也是中心对称图形.
要判定四边形是菱形的方法是:
法一:先证出四边形是平行四边形,再证出有一组邻边相等。(这就是定义证明)。
法二:先证出四边形是平行四边形,再证出对角线互相垂直。(这是判定定理2)
法三:只需证出四边都相等。(这是判定定理1)