二次根式:一般地,式子叫做二次根式.
1、如果一个数的平方等于a,那么这个数叫做a的平方根。
即,如果一个数x=a,那么这个数x是a的平方根。
2、正数a的正的平方根和零的平方根统称为算术平方根,用√ā(a≥0)来表示。
二次根式的定义和概念:
1、定义:一般形如√ā(a≥0)的代数式叫做二次根式。当a≥0时,表示a的算术平方根;当a小于0时,非二次根式(在一元二次方程中,若根号下为负数,则无实数根)被开方数必须大于等于0。
2、概念:式子√ā(a≥0)叫二次根式。√ā(a≥0)是一个非负数。其中,a叫做被开方数。
√a的性质和几何意义1)a≥0;√a≥0[双重非负性]
2)(√a)^2=a(a≥0)[任何一个非负数都可以写成一个数的平方的.形式]
3)c=√a^2+b^2表示直角三角形内,斜边等于两直角边的平方和的根号,即勾股定理推论。
4)√a^2=|a|
化最简二次根式如:不含有可化为平方数或平方式的因数或因式的有√2、√3、√6、√7、√a(a≥0)、√x+y等;
含有可化为平方数或平方式的因数或因式的有√4、√9、√16、√25、√a^2、√(x+y)^2、√x^2+2xy+y^2等
最简二次根式同时满足下列三个条件:(1)被开方数的因数是整数,因式是整式;(2)被开方数中不含有能开的尽的因式;(3)被开方数不含分母。
微信扫码关注公众号
获取更多考试热门资料