和平行四边形有关的辅助线作法 :平行四边形是最常见的特殊四边形之一,它有许多可以利用性质,为了利用这些性质往往需要添加辅助线构造平行四边形。 利用一组对边平行且相等构造平行四边形 ,利用两组对边平行构造平行四边形 ,利用对角线互相平分构造平行四边形 。与矩形有辅助线作法:计算型题,一般通过作辅助线构造直角三角形借助勾股定理解决问题,证明或探索题,一般连结矩形的对角线借助对角线相等这一性质解决问题.和矩形有关的试题的辅助线的作法较少.
和菱形有关的辅助线的作法:和菱形有关的辅助线的作法主要是连接菱形的对角线,借助菱形的判定定理或性质定定理解决问题. 作菱形的高,连结菱形的对角线 。与正方形有关辅助线的作法 :正方形是一种完美的几何图形,它既是轴对称图形,又是中心对称图形,有关正方形的试题较多.解决正 方形的问题有时需要作辅助线,作正方形对角线是解决正方形问题的常用辅助线
2.数学辅助线的方法一
三角形问题添加辅助线方法:有关三角形中线的题目,常将中线加倍。含有中点的题目,常常利用三角形的中位线,通过这种方法,把要证的结论恰当的转移,很容易地解决了问题。含有平分线的题目,常以角平分线为对称轴,利用角平分线的性质和题中的条件,构造出全等三角形,从而利用全等三角形的知识解决问题。结论是两线段相等的题目常画辅助线构成全等三角形,或利用关于平分线段的一些定理。结论是一条线段与另一条线段之和等于第三条线段这类题目,常采用截长法或补短法,所谓截长法就是把第三条线段分成两部分,证其中的一部分等于第一条线段,而另一部分等于第二条线段。
平行四边形中常用辅助线的添法:平行四边形(包括矩形、正方形、菱形)的两组对边、对角和对角线都具有某些相同性质,所以在添辅助线方法上也有共同之处,目的都是造就线段的平行、垂直,构成三角形的全等、相似,把平行四边形问题转化成常见的三角形、正方形等问题处理,其常用方法有下列几种:连对角线或平移对角线;过顶点作对边的垂线构造直角三角形;连接对角线交点与一边中点,或过对角线交点作一边的平行线,构造线段平行或中位线;连接顶点与对边上一点的线段或延长这条线段,构造三角形相似或等积三角形;过顶点作对角线的垂线,构成线段平行或三角形全等。
3.数学辅助线的方法二
平行线是个基本图形。当几何中出现平行线时添辅助线的关键是添与二条平行线都相交的等第三条直线。等腰三角形是个简单的基本图形。当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。等腰三角形中的重要线段是个重要的基本图形。出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。
直角三角形斜边上中线基本图形。出现直角三角形斜边上的中点往往添斜边上的中线。出现线段倍半关系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。三角形中位线基本图形。几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。
4.数学辅助线的方法三
圆中常用辅助线的添法:在平面几何中,解决与圆有关的问题时,常常需要添加适当的辅助线,架起题设和结论间的桥梁,从而使问题化难为易,顺其自然地得到解决。因此,灵活掌握作辅助线的一般规律和常见方法,对提高学生分析问题和解决问题的能力是大有帮助的。见弦作弦心距。有关弦的问题,常作其弦心距(有时还须作出相应的半径),通过垂径平分定理,来沟通题设与结论间的联系。
见直径作圆周角。在题目中若已知圆的直径,一般是作直径所对的圆周角,利用“直径所对的圆周角是直角”这一特征来证明问题。见切线作半径。命题的条件中含有圆的切线,往往是连结过切点的半径,利用“切线与半径垂直”这一性质来证明问题。两圆相切作公切线。对两圆相切的问题,一般是经过切点作两圆的公切线或作它们的连心线,通过公切线可以找到与圆有关的角的关系。两圆相交作公共弦。对两圆相交的问题,通常是作出公共弦,通过公共弦既可把两圆的弦联系起来,又可以把两圆中的圆周角或圆心角联系起来。