形如a+bi(a,b∈R)的数叫复数,其中i叫做虚数单位。下面就和初三网小编具体了解一下吧,供大家参考。
复数的定义我们把形如z=a+bi(a,b均为实数)的数称为复数,其中a称为实部,b称为虚部,i称为虚数单位。当z的虚部等于零时,常称z为实数;当z的虚部不等于零时,实部等于零时,常称z为纯虚数。复数域是实数域的代数闭包,即任何复系数多项式在复数域中总有根。
复数是由意大利米兰学者卡当在十六世纪首次引入,经过达朗贝尔、棣莫弗、欧拉、高斯等人的工作,此概念逐渐为数学家所接受。
复数的四则运算加法法则:(a+bi)+(c+di)=(a+c)+(b+d)i;
减法法则:(a+bi)-(c+di)=(a-c)+(b-d)i;
乘法法则:(a+bi)·(c+di)=(ac-bd)+(bc+ad)i;
除法法则:(a+bi)÷(c+di)=[(ac+bd)/(c²+d²)]+[(bc-ad)/(c²+d²)。
复数的几何意义(1)复平面、实轴、虚轴:
点Z的横坐标是a,纵坐标是b,复数z=a+bi(a、b∈R)可用点Z(a,b)表示,这个建立了直角坐标系来表示复数的平面叫做复平面,x轴叫做实轴,y轴叫做虚轴。显然,实轴上的点都表示实数,除原点外,虚轴上的点都表示纯虚数
(2)复数的几何意义:复数集C和复平面内所有的点所成的集合是一一对应关系。
这是因为,每一个复数有复平面内惟一的一个点和它对应;反过来,复平面内的每一个点,有惟一的一个复数和它对应。
微信扫码关注公众号
获取更多考试热门资料