题文
已知:m、x、y同时满足(A)(x-4)2+|1+m|=0,(B)-2aby+1与4ab3是同类项式.求代数式(m-x)y的值.
题型:未知 难度:其他题型
答案
∵(x-4)2+|1+m|=0,
∴x-4=0,1+m=0,即x=4,m=-1,
∵-2aby+1与4ab3是同类项式,
∴y+1=3,即y=2,
则原式=(-1-4)2=25.
点击查看代数式的求值知识点讲解,巩固学习
解析
该题暂无解析
考点
据学分高考专家说,试题“已知:m、x、y同时满足(A)(x-4).....”主要考查你对 [代数式的求值 ]考点的理解。
代数式的求值
代数式的值:
用数值代替代数式的字母,按照代数式指明的运算,计算出结果才,叫做代数式的值。
代数式求值的步骤:
(1)代入;
(2)计算。
常用的代入方法有直接代入法与整体代入法。
注:代数式的值的取值条件:
(1)不能使代数式失去意义;
(2)不能使所表示的实际问题失去意义。
求代数式的值的方法:
①给出代数式中所有字母的值,该类题一般是先化简代数式,再代入字母的值,然后计算。
②给出代数式中所含几个字母之间的关系,不直接给出字母的值,该类题一般是把所要求的代数式通过恒等变形,转化成为用已知关系表示的形式。
③在给定条件中,字母之间的关系不明显,字母的值隐含在题设条件中,该类题应先由题设条件求出字母的值,再求代数式的值。
微信扫码关注公众号
获取更多考试热门资料