教学目标
认知目标:
(1)理解因式分解的概念和意义
(2)认识因式分解与整式乘法的相互关系——相反变形,并会运用它们之间的相互关系寻求因式分解的方法。
能力目标:由学生自行探求解题途径,培养学生观察、分析、判断能力和创新能力,发展学生智能,深化学生逆向思维能力和综合运用能力。
情感目标:培养学生接受矛盾的对立统一观点,独立思考,勇于探索的精神和实事求是的科学态度。
目标制定的思想
1.目标具体化、明确化,从学生实际出发,具有针对性和可行性,同时便于上课操作,便于检测和及时反馈。
2.课堂教学体现能力立意。
3.寓德育教学方法
1.采用以设疑探究的引课方式,激发学生的求知欲望,提高学生的学习兴趣和学习积极性。
2.把因式分解概念及其与整式乘法的关系作为主线,训练学生思维,以设疑——感知——概括——运用为教学程序,充分遵循学生的认知规律,使学生能顺利地掌握重点,突破难点,提高能力。
3.在课堂教学中,引导学生体会知识的发生发展过程,坚持启发式,鼓励学生充分地动脑、动口、动手,积极参与到教学中来,充分体现了学生的主动性原则。
4.在充分尊重教材的前提下,融教材练习、想一想于教学过程中,增设了由浅入深、各不相同却又紧密相关的训练题目,为学生顺利掌握因式分解概念及其与整式乘法关系创造了有利条件。
教学过程安排
一、提出问题,创设情境
问题:看谁算得快?
(1)若a=101,b=99,则a2-b2=(a+b)(a-b)=(101+99)(101-99)=400
(2)若a=99,b=-1,则a2-2ab+b2=(a-b) 2=(99+1)2 =10000
(3)若x=-3,则20x2+60x=20x(x+3)=20x(-3)(-3+3)=0
二、观察分析,探究新知
(1)请每题想得最快的同学谈思路,得出最佳解题方法
(2)观察:a2-b2=(a+b)(a-b) ①的左边是一个什么式子?右边又是什么形式?
a2-2ab+b2 =(a-b) 2 ②
20x2+60x=20x(x+3) ③
(3)类比小学学过的因数分解概念,(例42=2×3×7 ④)得出因式分解概念。
板书课题: 因式分解
1.因式分解概念:把一个多项式化成几个整式的积的形式叫做因式分解,也叫分解因式。
三、独立练习,巩固新知
练习
1.下列由左边到右边的变形,哪些是因式分解?哪些不是?为什么?
①(x+2)(x-2)=x2-4
②x2-4=(x+2)(x-2)
③a2-2ab+b2=(a-b)2
④3a(a+2)=3a2+6a
⑤3a2+6a=3a(a+2)
2.因式分解与整式乘法的关系:
因式分解
结合:a2-b2=========(a+b)(a-b)
整式乘法
说明:从左到右是因式分解其特点是:由和差形式(多项式)转化成整式的积的形式;从右到左是整式乘法其特点是:由整式积的形式转化成和差形式(多项式)。
(2)∵xy( )=2x2y-6xy2
∴2x2y-6xy2=xy( )
(3)∵2x( )=2x2y-6xy2
∴2x2y-6xy2=2x( )
四、强化训练,掌握新知:
练习3:把下列各式分解因式:
(1)2ax+2ay (2)3mx-6nx (3) x2y+xy2
(4) x2+-x (5) x2-0.01
(让学生上来板演)
五、整理知识,形成结构(即课堂小结)
1.因式分解的概念 因式分解是整式中的一种恒等变形
2.因式分解与整式乘法是两种相反的恒等变形,也是思维方向相反的两种思维方式,因此,因式分解的思维过程实际也是整式乘法的逆向思维的过程。
3.利用2中关系,可以从整式乘法探求因式分解的结果。
4.教学中渗透对立统一,以不变应万变的辩证唯物主义的思想方法。
六、布置作业
1.作业本(一)中§7.1节
评价与反馈
1.通过由学生自己得出因式分解概念及其与整式乘法的关系的结论,了解学生观察、分析问题的能力和逆向思维能力及创新能力。发现问题,及时反馈。
2.通过例题及练习,了解学生对概念的理解程度和实际运用能力,最大限度地让学生暴露问题和认知误差,及时发现和弥补教与学中的遗漏和不足,从而及时调控教与学。
七.课堂小结,了解学生对概念的熟悉程度和归纳概括能力、语言表达能力、知识运用能力,教师恰当地给予引导和启迪。
教学准备
教学目标
知识与能力
1.了解多项式公因式的意义,初步会用提公因式法分解因式;
2.通过找公因式,培养观察能力.
过程与方法
1.了解因式分解的概念,以及因式分解与整式乘法的关系;
2.了解公因式概念和提取公因式的方法;会用提取公因式法分解因式.
情感态度与价值观
1.在探索提公因式法分解因式的过程中学会逆向思维,渗透化归的思想方法;
2.培养观察、联想能力,进一步了解换元的思想方法;
教学重难点
重点:能观察出多项式的公因式,并根据分配律把公因式提出来.
难点: 识别多项式的公因式.
教学过程
一、 新课导入
请同学们想一想?993-99能被100整除吗?
解法一:993-99=970299-99
=970200
解法二:993-99=99(992-1)
=99(99+1)(99-1)
=100×99×98
=970200
(1)已知:x=5,a-b=3,求ax2-bx2的值.
(2)已知:a=101,b=99,求a2-b2的值.
你能说说算得快的原因吗?
解:(1) ax2-bx2=x2(a-b)
=25×3=75.
(2) a2-b2=(a+b)(a-b)
=(101+99)(101-99)
=400
二、新知探究
1、做一做:
计算下列各式:
①3x(x-2)= __3x2-6x
②m(a+b+c)= ma+mb+mc
③(m+4)(m-4)= m2-16
④(x-2)2= x2-4x+4
⑤a(a+1)(a-1)= a3-a
根据左面的算式填空:
①3x2-6x=(_3x__)(_x-2__)
②ma+mb+mc=(_m_)(a+b+c_)
③m2-16=(_m+4)(m-4_)
④x2-4x+4=(x-2)2
⑤a3-a=(a)(a+1)(a-1)
左边一组的变形是什么运算?右边的变形与这种运算有什么不同?右边变形的结果有什么共同的特点?
总结: 把一个多项式化成了几个整式的积的形式,像这样的式子变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式.
整式乘法 因式分解与整式乘法是互逆过程 因式分解
在am+bm=m(a+b)中,m叫做多项式各项的公因式.
公因式:
即每个单项式都含有的相同的因式.
提公因式法:
如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成乘积的形式.这种分解因式的方法叫做提公因式法.
确定公因式的方法:
(1)公因式的系数是多项式各项系数的最大公约数;
(2)字母取多项式各项中都含有的相同的字母;
(3)相同字母的指数取各项中最小的一个,即最低次幂.
三、例题分析
例1 把12a4b3+16a2b3c2分解因式.
解:12a4b3+16a2b3c2
=4a2b3·3a2+ 4a2b3 ·4c2
= 4a2b3 (3a2 + 4c2)
提公因式后,另一个因式:
①项数应与原多项式的项数一样;
②不再含有公因式.
例2 把2ac(b+2c)- (b+2c)分解因式.
解:2ac(b+2c) -(b+2c)
= (b+2c)(2ac-1)
公因式可以是数字、字母,也可以是单项式,还可以是多项式.
例3 把-x3+x2-x分解因式.
解:原式=-(x3-x2+x)
=-x(x2-x+1)
多项式的第一项是系数为负数的项,一般地,应提出负系数的公因式.但应注意,这时留在括号内的每一项的符号都要改变,且最后一项“-x”提出时,应留有一项“+1”,而不能错解为-x(x2-x).
四、当堂训练
1.(1)9x3y3-12x2y+18xy3中各项的公因式是 3xy_.
(2)5x2-25x的公因式为 5x .
(3)-2ab2+4a2b3的公因式为-2ab2.
(4)多项式x2-1与(x-1)2的公因式是x-1.
2.如果(x+y)(x2-xy+y2)-(x+y)xy有公因式(x+y),那么另外的因式是 (x-y)2
课后小结
1.分解因式
把一个多项式分解成几个整式的积的形式,叫做分解因式,分解因式和整式乘法互为逆运算.
2.确定公因式的方法
一看系数 二看字母 三看指数
3.提公因式法分解因式步骤(分两步)
第一步 找出公因式;
第二步 提公因式.
4.用提公因式法分解因式应注意的问题
(1)公因式要提尽;
(2)某一项全部提出时,这一项除以公因
式时的商是1,这个1不能漏掉;
(3)多项式的首项取正号.
板书
一、因式分解
把一个多项式化成了几个整式的积的形式,像这样的式子变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式.
二、提公因式法
如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成乘积的形式.这种分解因式的方法叫做提公因式法.
am+bm=m(a+b)
二、例题分析
例1、
例2、
例3、
三、当堂训练
数学上册因式分解教学设计范文
作为一名教职工,往往需要进行教学设计编写工作,借助教学设计可以促进我们快速成长,使教学工作更加科学化。我们应该怎么写教学设计呢?以下是小编收集整理的数学上册因式分解教学设计范文,供大家参考借鉴,希望可以帮助到有需要的朋友。
教学目标
1.使学生了解因式分解的意义,知道它与整式乘法在整式变形过程中的相反关系.
2.通过观察,发现分解因式与整式乘法的关系,培养学生的观察能力和语言概括能力.
教学重点
1.理解因式分解的意义.
2.识别分解因式与整式乘法的关系.
教学难点
通过观察,归纳分解因式与整式乘法的关系.
教学目标
一、创设问题情境,引入新课
计算(a+b)(a-b)
a2-b2=(a+b)(a-b)成立吗?那么如何去推导呢?这就是我们即将学习的内容:因式分解的问题.
二、讲授新课
1.讨论993-99能被100整除吗?你是怎样想的?与同伴交流.
993-99能被100整除.
因为993-99=99×992-99
=99×(992-1)=99×9800=99×98×100
其中有一个因数为100,所以993-99能被100整除.993-99还能被哪些正整数整除?
还能被99,98,980,990,9702等整除.
从上面的推导过程看,等号左边是一个数,而等号右边是变成了几个数的积的形式.
2.议一议
你能尝试把a3-a化成n个整式的乘积的形式吗?与同伴交流.
观察a3-a与993-99这两个代数式.
3.做一做
(1)计算下列各式:
①(m+4)(m-4)=__________;
②(y-3)2=__________;
③3x(x-1)=__________;
④m(a+b+c)=__________;
⑤a(a+1)(a-1)=__________.
(2)根据上面的算式填空:
①3x2-3x=( )( );
②m2-16=( )( );
③ma+mb+mc=( )( );
④y2-6y+9=( )2.
能分析一下两个题中的形式变换吗?
在(1)中,等号左边都是乘积的形式,等号右边都是多项式;在(2)中正好相反,等号左边是多项式的形式,等号右边是整式乘积的形式.
在(1)中我们知道从左边推右边是整式乘法;在(2)中由多项式推出整式乘积的形式是因式分解.
把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式
4.想一想
由a(a+1)(a-1)得到a3-a的变形是什么运算?由a3-a得到a(a+1)(a-1)的变形与这种运算有什么不同?你还能举一些类似的例子加以说明吗?
由a(a+1)(a-1)得到a3-a的变形是整式乘法,由a3-a得到a(a+1)(a-1)的变形是分解因式,这两种过程正好相反.
由(a+b)(a-b)=a2-b2可知,左边是整式乘法,右边是一个多项式;由a2-b2=(a+b)(a-b)来看,左边是一个多项式,右边是整式的乘积形式,所以这两个过程正好相反.
如:(1)m(a+b+c)=ma+mb+mc (2)ma+mb+mc=m(a+b+c)
联系:等式(1)和(2)是同一个多项式的两种不同表现形式.
区别:等式(1)是把几个整式的`积化成一个多项式的形式,是乘法运算.
等式(2)是把一个多项式化成几个整式的积的形式,是因式分解.
即ma+mb+mc m(a+b+c).
所以,因式分解与整式乘法是相反方向的变形.
5.例题:下列各式从左到右的变形,哪些是因式分解?
(1)4a(a+2b)=4a2+8ab;
(2)6ax-3ax2=3ax(2-x);
(3)a2-4=(a+2)(a-2);
(4)x2-3x+2=x(x-3)+2.
(1)左边是整式乘积的形式,右边是一个多项式,因此从左到右是整式乘法,不是因式分解;
(2)左边是一个多项式,右边是几个整式的积的形式,因此从左到右的变形是因式分解;
(3)和(2)相同,是因式分解;
(4)是因式分解.
三、课堂练习 连一连(略)
【微语】永远自由如风,永远为自己着迷。
微信扫码关注公众号
获取更多考试热门资料