一、说教材
矩形是人们日常生活中应用最广泛的几何图形之一,本节课选自冀教版义务教育课程标准实验教科书八年级数学(下册)第22章第4节《矩形》第一课时,这节课是在学生学习了平行线、三角形中位线以及平行四边形的有关知识的基础上来学习的。教科书力求突出矩形性质的探索过程,让学生通过图形变换和简单推理等方法,自主地探索出矩形的有关性质和识别条件,再现图形性质丰富多彩的探究过程,进一步发展学生的合情推理能力和说理的基本方法。
基于本节课的主要内容是围绕着矩形的性质与识别条件而展开的,矩形的性质与判定方法在本节课中处于核心地位,所以我确定本节课的教学重点为矩形的性质与识别条件,难点是矩形性质和识别条件的探究和应用。
二、说学生
八年级第二学期的学生已经学习了初中阶段包括全等三角形的性质、识别在内的绝大多数几何概念及定理,学生的抽象思维能力、逻辑推理能力有了很大的提高。另外,八年级的同学,活泼好动,有较强的理解和模仿能力,对于新鲜的知识也充满着好奇心和强烈的求知欲望,而在矩形的性质和识别条件中,又有许多颇有思考价值的问题。因此,我在组织教学过程中,让学生合作交流、自主探索矩形的性质和识别条件,这不仅使学生学到科学的探究方法,而且体验到探究的乐趣,享受到成功的喜悦。
三、说教学目标
(1)知识与技能目标:
掌握矩形的概念和性质,理解并掌握矩形的识别方法,会初步运用矩形的概念和性质来解决有关问题。
(2)过程与方法目标:
经历探索矩形性质和识别条件的过程,在直观操作活动和简单的说理过程中发展学生初步的合情推理能力、增进主动探究的意识,逐步掌握说理的基本方法。
(3)情感态度价值观目标:
培养严谨的推理能力,以及合作探究的精神,体会逻辑推理的思维价值。
四、说教法
没有学生参与的教学活动几乎是无效的教学活动,本节课的难度不大,让学生参与整个教学过程,自己得出并总结出结论,这样做不仅给学生留下了深刻的印象,而且学生的能力也得到了培养,因此,我采用以“激—导—探—结”为主线的教学方法。
五、说学法
学生是学习的主体,分析学生是教师实施教学行为的关键,所以教师要在教学过程中让学生增长主体意识,达到预期的目的,学生自主参与整堂课的知识构建,从定理的得出到证明,从参与问题的发生,发展到问题的解决,让学生积累自己的知识经验,形成完整的知识体系,因此,我主要采用自主探究法、合作交流法。
六、说教学过程
第一、新课引入(3`)
1、首先进行复习提问:什么叫平行四边形?它和四边形有什么区别?
(这主要是和上节课有一个很好的衔接,另外为学习矩形做一个铺垫,创造学生参与并展示自我的活跃的课堂气氛)
2、观察与思考:展示生活中一些平行四边形的实际应用图片(如:国旗,显示器,门、纸张等),让学生想一想:这里面应用了平行四边形的什么性质?它们有什么特殊之处?
3、教师演示:用活动的平行四边形教具,做演示平行四边形的移动过程实验,提问:它还是一个平行四边形吗?为什么?然后,当移动到一个角是直角时停止,让学生观察这是什么图形?
(通过实例和教具演示,可激发学生的学习兴趣,使学生实现由感性认识到理性认识的转变,并使其感受到数学与生活是紧密联系的,然后,引出矩形定义)
第二、课件展示:矩形的定义,让学生举出身边的矩形的实例,学生不难说出书桌面、教科书的封面等矩形实物。
(通过这个课件展示和实例可以使学生深刻的认识到矩形是角特殊的平行四边形。)
第三、探究活动一(10`):让学生画出一个矩形ABCD:
①你认为矩形是轴对称图形吗?如果是,它有几条对称轴?试着画出来,并用对折的方法进行验证。
②连续对角线AC、BD,它们的交点O在矩形ABCD的对称轴上吗?
③OA,OB,OC,OD之间有什么数量关系?
在教师指导下采用自主探究、分组讨论的形式完成,引导学生探究四边形的性质应该从边、角、对角线、对称性等几个方面去研究,这里要给学生充足的时间,让学生以小组为单位,进行交流,这样做的目的是激发学生的竞争意识,同时也考查了小组之间的合作能力,让做的快的同学也享受其它组的同学成功的幸福感,等学生完成以后,教师一一点评,并给以鼓励。
学生通过操作,思考、交流、归纳后得到矩形的性质。
待学生掌握了矩形的性质后,让学生运用所学知识来解决例1,展示课件。然后教师给以点拨和评价,并鼓励学生:你能行!很聪明!
第四、探究活动二(10`)
设置问题情境:怎样识别矩形呢?我采用分组讨论,自主探究的方法,注意引导学生用数学语言表达,学生讨论后,各组分别展示讨论结果,教师给予积极评价和鼓励。继续提问:矩形识别条件还有哪些呢?
{教师补充:对角线互相平分且相等的四边形是矩形。}
这个环节教师应该大胆放开手脚,指导学生自主探究,合作交流,对个别有疑问的学生可适当点拔。
矩形的识别方法口诀(帮助学生理解和记忆)
第五、随堂练习(10`):要求在规定的时间内完成,这样做的目的一是:考查学生对本节课的掌握程度。二是作为教师,也了解学生存在的问题,以便及时查漏补缺。
第六、课堂小结(5`):这个环节是让学生来完成,这样做的.目的是让学生养成及时总结、善于总结的习惯,让这种习惯以后变为一种能力并终生受用。
第七、作业布置:P72习题 第1、2题 (祝你成功)
七、板书设计:
八、设计理念:
本节课的设计主要是针对学生现有的知识水平,主要采用是利用小组学习、讨论交流、自主探究的教学方式,目的是最大限度地调动学生的积极性和主动性,既开发了学生的思维,学生的个性也得到了发展,把主动权也交给了学生,培养了学生创新精神和创新能力。
教师始终是学生学习的引导者,参与者和管理者,学生以研究者,探索者的角色出现在教学过程中,主体地位得到充分体现,自然而然地学生知识和技能就得到了提高,我希望让教学过程成为学生再发现,再创造的过程。
初中数学矩形说课稿
关于初中数学矩形说课稿,学生学习了本课,要能应用矩形定义、判定等知识,解决简单的证明题和计算题,下面由小编为您整理出的相关内容,一起来看看吧。
各位评委、各位老师:
你们好!今天我要为大家讲的课题是《矩形的判定》,根据新课标理念,对应本节,我将以教什么、怎样教以及为什么这样教为思路,从教材分析、教学目标分析、教学策略分析、教学过程分析四个方面加以说明。
一、教材分析(说教材):
①教材所处的地位和作用:本节教材是初中一年级第二册,第19章《四边形》的第二节的内容,是初中教学的重要内容之一。一方面这是在学习了不等式的基础上,对不等式的进一步深入和拓展;另一方面,又为学习不等式组等知识奠定了基础,是进一步研究不等式的工具性内容。因此我认为本节起着承前启后的作用。
②教学目标:
1、通过探索和交流使学生逐步得出矩形的判定方法,使学生亲身经历知识发生发展的过程,并会用判定方法解决相关的问题。
2、通过探究中的猜想、分析、类比、测量、交流、展示等手段,让学生充分体验得出结论的过程,让学生在观察中学会分析,在操作中学习感知,在交流中学会合作,在展示中学会倾听。培养学生合情推理能力和逻辑思维能力,使学生在学习中学会学习。
3、使学生经历探究矩形判定的过程,体会探索研究问题的方法,使学生在数学活动中获取成功的体验,增强自信心。
③教学重点、难点:教学重点:掌握矩形的判定方法及证明过程教学难点:矩形判定方法的证明以及应用
下面为了讲清重点和难点,使学生达到本节课的教学目标,我再从教法和学法上谈谈:
二、教学策略(说教法):
1、教学手段:通过动手实践、合作探索、小组交流,培养学生的的逻辑推理、动手实践等能力。
2、教学方法及其理论依据:通过探索与交流,逐渐得出矩形的判定定理,使学生亲身经历知识的发生过程,并会运用定理解决相关问题。通过开放式命题,尝试从不同角度寻求解决问题的方法。
三、教学过程环节一:
创设情境、导入新课
通过上节课对矩形的学习,谁能告诉我矩形是怎样定义的`?(通过对矩形定义的回顾,引出判定矩形除了定义外,还有哪些方法,导入新课。)
回顾:
1、矩形的定义:有一个角是直角的平行四边形叫矩形
2、矩形的性质:对边:对边平行且相等。对角:四个角相等,都是直角。对角线:互相平分且相等。
3、平行四边形的性质:
环节二:尝试发现,探索新知:活动一:学生分成学习小组,限定仅用手中量角器尝试判定课前准备好的四边形纸板是否为矩形纸板,并说明理由。(此问题的解决以分组合作交流的形式进行,学生在探究过程中根据已有的知识积累——矩形的定义,得出矩形的判定定理一。教师以合作者的身份深入到小组中,与学生交流,了解学生的探究进程并适当给予点拨。)活动结束,由小组代表汇报交流结果,并可适当板书进行推证、讲解。在此过程中,全体同学可互相补充、互相评价,培养学生的语言表达能力、推理能力。
活动二:学生分成学习小组,限定仅用直尺尝试判定课前准备好的平行四边形纸板是否为矩形纸板,并说明理由。(此问题的解决仍以分组合作交流的形式进行,学生在探究过程中根据已有的知识积累——矩形的判定定理一,得出矩形的判定定理二。)通过此种互动过程,让全体学生参与其中,获得不同程度的收获,体验成功的喜悦。
定理一、定理二得出后,总结矩形的三种判定方法,并对题设进行比较、区分,使学生进一步明确定理应用的条件。(学生比较,归纳。)
环节三:应用辨析,巩固定理
总结:矩形判定方法1有一个角是直角的平行四边形是矩形矩形判定方法2有三个角是直角的四边形是矩形。
矩形判定方法3对角线相等的平行四边形是矩形。为了帮助学生巩固定理,应用定理,练习如下:
一、判断题:
1、四个角都相等的四边形是矩形2、对角线相等的四边形是矩形。3、对角线互相平分且相等的四边形是矩形。4、一组对角互补的平行四边形是矩形。
二、填空题:
1、若四边形ABCD的对角线AC、BD相等,且互相平分于O,则四边形ABCD是_形,若∠AOB=60,那么AB:AC=_,若AB=4cm,BC=_cm,矩形ABCD的面积为_。
2、两条平行线被第三条直线所截,两组同旁内角的平分线相交所成的四边形是_形。习题设置原则及解决方法说明:
判断题的设计加强学生对所学定理的理解和掌握,使学生能将给出的条件转化为应用定理所需的条件,辨析判定定理的题设,以便更好地应用定理。填空题第一题是对教材例2的改编,第二题是对教材习题的改编,这两个问题的解决分别应用所学定理,使学生能够学习致用。这两道题的解决方法是先采用独立完成形式,有困难的学生可以求助老师或同学,学生互助完成,派学生代表板书讲解。
环节四:开放训练,发散思维
变式训练
△ABC中,点O是AC边上的一个动点。
过点O作直线MN∥BC,设MN交∠BCA的
平分线于点E,交∠BCA的外角平分线于点F。
(1)求证:EO=EF
(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论。
变式训练的设置,旨在发散学生的思维,使不同层次的学生都能有所收获,而移动、旋转等问题也是近年中考的热点。学生思考、讨论完成,教师适当点拨,加以讲解。
环节五:反思小结,体验收获.今天你学到了什么?谈谈你的收获。再现知识,教师点评,对学生在课堂上的积极合作,大胆思考给与肯定,提出希望。
环节六:布置作业,反馈回授通过作业反馈对所学知识的掌握效果,并进一步巩固定理,应用定理。
以上是我对本节课的理解,不足之处,请各位评委、老师指正。谢谢大家!
数学矩形的判定说课稿
一.教材分析与处理
1、教材的地位和作用;
本课是八年级(下)第19章第2节《矩形的判定》,主要研究矩形的判定方法,它不仅是本节的重点,也是以后学习正方形和圆等知识的基础,通过观察试验,归纳证明,培养学生的推理能力和演绎能力,为后面的学习奠定基础。
2、教学目标:
(1)知识技能:
A会证明矩形的两个判定定理。
B会根据矩形的定义和判定定理判定一个四边形是矩形,并能进行有关论证和计算。
(2)数学思考:
经历探究矩形判定条件的过程,通过观察猜想证明归纳总结,发展学生的合情推理能力,培养主动探究的习惯。
(3)解决问题:
A探索并掌握矩形的判定方法。
B利用矩形的判定解决问题。
(4)情感态度和价值观
A让学生在探索过程中加深对矩形的理解,激发他们的求知欲望。
B进一步体会矩形的结构美和应用美。
3、教学重点和难点:
(1)重点:矩形的判定方法。
(2)难点:合理应用矩形的判定定理解决问题。
4、教材处理:
根据教学目标,为突出重点,突破难点,在探索矩形的判定定理1时,用教具演示,四边形的两条对角线在保持互相平分的前提下进行伸缩,当他们的长度相等时平行四边形变为矩形。给学生以直观感受,印象深刻,本节课利用学生自制矩形献给母亲的礼物,为检测礼物是否为矩形,让学生从不同角度思考,提出不同检测方法,判定每种方法的数学原理,让学生体会数学来源于生活又应用于生活的理念,在探索矩形的判定定理2时,先让学生观察动画按顺序画出矩形,含有三个直角的四边形观察猜想此四边形为矩形,再证明这个猜想。将106页练习2作为例题,从不同角度探讨此题的解题思路,拓展学生的思维空间。
二、教学方法与教学手段:
1、教学方法:本节课通过学生动手实践来学习数学,渗透数学思想,交给学生解题方法和解题技巧。让学生体会基础知识是解题方法的能源。联想想象直觉分析与综合等思维方法是解题的关键,比较法化规法,抽象概括法,特殊化方法等数学思想方法是解题方法与技巧的灵魂,注重解题研究是提高解题能力的有效途径。
2、教学手段:通过学生自制学具,动手操作和课件可以让学生验证体会自己的`想法,提高学生的动手实践和猜想能力,拓展学生的思维空间。
三、教学程序:
(一)引课:教师通过提问和矩形定义,列表对比平行四边形和矩形的性质,让学生回忆平行四边形的判定。引出本节课题矩形的判定。目的在比较突出矩形独有的四个角都是直角和对角线相等的两个性质。为探索矩形的判定做好铺垫。
(二)教学过程:
1、先用教具演示四边形的两条对角线在保持相互平分的前提下进行伸缩,当他们的长度相等时让学生观察猜想平行四边形变成矩形并引导学生证明,目的激发学生的探究兴趣,体会证明的必要性。
2、研究工人师傅检测门窗方法的数学原理,让学生思考不同检测方法,目的是开拓学生的思维空间。
3、接着让学生按顺序画出含有三个直角的四边形,观察探索矩形的判定定理2,在证明这个猜想,目的是通过学生动手画图实践观察,猜想,验证,感受到动手操作,猜想的乐趣培养学生的猜想能力和推理能力。
4、总结矩形的三个判定方法,并应用这3个方法做10道判定题,目的是进一步理解强化矩形的三个判定方法。
5、例题和随堂练习,目的是引导学生关注判定定理的应用,学会思维提高分析能力,体会注重解题研究是提高解题能力的有效途径。
6、小结:学生对本节课的体会,收获进行总结。
其目的是:(1)加深学生对知识的理解,促进学生课堂的反思。
(2)让学生理解数学思想和方法。
(3)让学生感受学有所成的喜悦。
7、作业:必做题和选做题。
其目的是:(1)便于发现问题,及时查缺补漏。
(2)巩固提高使各层次的学生得到不同的发展
矩形初中数学第一课时说课稿
各位领导、老师大家好:
今天说课的题目是八年级(下册)第六章第一节《矩形》第一课时。下面我分设计理念与思路、教材分析、学生分析、教学目标、教学过程设计、板书设计等六个方面说一下这节课。
一、设计理念与思路:
新课标以培养学生的能力为目标,积极倡导他们亲身经历探究为主的学习活动,培养他们的好奇心和探究欲,发展他们对科学本质的理解,使他们学会探究解决问题的策略,为他们的终身学习和生活打好基础。在教育方式上,也要体现出以人为本,以学生为中心,让学生真正成为学习的主人而不是知识的奴隶。在课堂教学中,帮助学生检视和反思自我,唤起学生成长的渴望;帮助学生寻找、搜集和利用学习资源,设计恰当的学习活动;帮助学生发现他们所学东西的实际意义,营造和维持学习过程中积极的心理氛围;故此本课从生活中的数学(做窗框)入手,充分展示“观察、操作-猜想、探索-说理”的认识过程,使学生能在直观的基础上学习说理,体现直观与简单推理的融合基础知识的掌握与能力的形成。
二、教材分析:
本节课是平行四边形与特殊平行作业(矩形、菱形和正方形)之间第一课时,起到承上启下的作用,是本章内容的一个重点。同时,矩形又是人们日常生活中最常见的应用最广泛的一种几何图形,使学生体会到几何知识来源于实际又作用于实际的辨证关系。在研究几个图形之间的从属关系时也涉及了辨证思维和认识论的一些观点,这对于发展学生的逻辑思维能力和渗透辨证唯物主义观点的教育,都有一定的作用。
三、学生分析:
学生在小学学习过长方形的简单知识,有了这样的基础,再加上八年级学生思维活跃,兴趣广泛,获取信息渠道多,对新事物的追求与敏感,他们完全有能力通过自主探究的学习方式借助老师恰当的点拨,来学好矩形的性质。这就要求我们在课堂上要敢于放手,让学生去想,去说,去做,去表达,去自我评价,去体会成功的喜悦。面对问题,让学生大胆实践,使学生在实践中发现真知,从而体验到成功的喜悦,更加增强了学好数学的信心,促进学生形成积极乐观的态度和正确的人生观。
四、教学目标:
知识目标:1、掌握矩形的概念和性质,理解矩形与平行四边形的区别与联系.
2、会初步运用矩形的概念和性质来解决有关问题.
3、渗透运动联系、从量变到质变的观点.
能力目标:使学生能应用矩形定义、性质等知识,解决有关问题,进一步培养学生的逻辑推理能力。
情感目标:通过引入,使学生加深对矩形概念的理解,并以此激发学生的探索精神。
教学重点:矩形的性质。
教学难点:矩形的性质的灵活运用、学生的书写。
五、教学过程设计:
1、情境创设:让学生从生活中的数学引入(做窗框)入手,引导学生注重观察生活,从而进一步研究矩形的性质进入学习情境。
2、探索活动:活动一操作-观察-探索
活动分三个层次:第一层次:让学生了解做窗框的过程,即从中包含的数学知识,平行四边形的判定,两组对边分别相等的四边形是平行四边形。
第二层次:引导学生探索四边形ABCD的特点。学生通过进一步探究可以发现平行四边形ABCD中有一个角是直角,这样就为引入矩形的概念做好铺垫。
第三层次:概括得出矩形概念。在第二层次的基础上概括得出矩形概念,同时,要启发学生注意:矩形的概念有两方面的涵义,它既是矩形的一条性质,又是矩形的一种判定方法。
活动二探索矩形的性质
活动分四个层次:
第一层次:让学生举例说明生活中的矩形,使学生直观初步认识矩形,及矩形在生活中的广泛应用。
第二层次:让学生通过量课堂课本封面来了解矩形的'性质,复习平行四边形的性质,并使学生理解矩形与平行四边形的特殊与一般的辨证关系,矩形具备一般平行四边形的性质,从而让学生叙述矩形具备的一般平行四边形的性质。
第三层次:引导学生思考,促使学生理解,由于矩形比一般平行四边形多一个特殊条件:有一个角是直角,因此矩形具有一些特殊性质,探索它的特殊性质要从它的特殊处有一个角是直角入手。引导学生观察:改变平行四边形形状,它的边、角、对角线有怎样的变化?当一个角为直角时,它的四个角有什么特点?两条对角线有怎样的特殊关系?这一层次旨在利用四边形的不稳定性,借助直观,引导学生通过合情推理去探索、发现结论。同时在演示的过程中,学生可以体会到知识发生的过程,渗透了量变到质变的辩证唯物主义观点的教育。
第四层次:在第三层次的基础上,引导学生对矩形的角、对角线的性质进行说理,同时发展学生有条理地表达能力。
3、例题讲解:
讲解课本例1。本例设计的目的直接应用矩形的有关性质;同时为总结矩形中具有的一些特殊图形(四个等腰三角形)做铺垫。也进一步培养学生的数学表达能力和书写能力。
4、课堂练习:例题讲解完毕后,通过问题链来归纳总结矩形的相关特点:由OA=OB=OC=OD可知图中有几个等腰三角形?这些三角形全等吗?面积相等吗?几个直角三角形?研究矩形的轴对称性。有关矩形的问题往往转化为直角三角形或等腰三角形的问题解决。
5、课堂小结:引导学生归纳总结,教师补充升华:矩形的性质
6、知识拓展
1、培养学生用多种方法解决实际和积极思考的习惯,同时为下一节课创设问题情境,(引入课中问题中另一种解决办法)
2、通过生活知识引导学生探究数学,应用数学,培养学生的学习数学的兴趣(门框窗框为什么要做成矩形的?)
7、布置作业:课本P134T1、2、3、4;作业本(2)P33
六、板书设计:
矩形的性质(一)、定义:(二)、矩形的性质(三)、例题
七、反思:
本节课的容量决定学生板书时间太少。
矩形性质说课稿
一、教材分析
1、教材的地位和作用
本课时学习的内容:矩形的概念及性质,是在学生已经学过四边形、平行四边形的概念、性质及判定的基础上进行的,是这一章的重点内容之一。矩形是特殊的平行四边形,而后面要学的正方形又是特殊的矩形,所以它既是前面所学知识的延伸,又为后面学习其它特殊平行四边形提供了研究方法和学习策略,为今后学习其他有关知识奠定了基础,起着承上起下的重要作用。
本节课的内容渗透着转化、对比的数学思想,重在训练学生的逻辑思维能力和分析归纳能力,因此,在知识和能力培养上也都有着重要的作用。
2、教学目标
⑴ 知识与技能:掌握矩形的概念、性质及识别方法,并会初步运用矩形的概念和性质解决有关实际问题。
⑵ 过程与方法:在探索矩形性质和识别条件的过程中,渗透从一般到特殊、转化归纳、类比迁移的数学思想,进一步提高学生的分析问题与解决问题的能力。
⑶ 情感态度与价值观:通过动手操作、观察比较、合作交流,激发学生的学习兴趣,增强学习信心,体验探索与创造的快乐,感受数学的美感。
3、教学重难点
⑴ 重点:掌握矩形的性质定理。
⑵ 难点:运用矩形的性质进行证明与计算。
二、学情分析
学生已经学习了三角形、四边形、平行四边形、积累了一定的几何图形方面的知识,在此基础上继续学习矩形的特性,就显得比较容易。但从定义推导出性质的方法是学生感到陌生和新奇的地方。八年级学生正处在青春发育期,思维比较活跃,理解模仿能力较强,对新的知识充满着好奇、有着强烈的求知欲望。而在矩形的性质和识别条件中,又有许多颇有思考价值的问题,有利于学生自主探究,合作交流,使学生既能学到科学的探究方法,又能体验到探究的乐趣,享受到成功的喜悦。
三、教法选择
本课时根据学生现有的知识水平,主要采用小组学习、讨论交流、自主探究的教学方式,即“创设情境——自主探究——归纳应用”的模式,力求充分调动学生的积极性和主动性,激发学生学习兴趣,发展学生积极思维,培养学生分析问题和解决问题的能力。
四、媒体资源选择
学生:三角板、量角器、长方形纸片。
教师:平行四边形教具、矩形纸板、PPT课件。
五、教学流程
(一)创设情境 设疑导入
提出问题:(课件演示)在庆祝元旦活动中有一投圈游戏,四个同学们分别站在一个长方形(矩形)的四个顶点处,目标物放在哪个位置,对每个人都公平呢?为什么?
【设计意图】从学生喜爱的游戏活动引入新课,有利于激发学生的学习兴趣,感受到数学就在自己的娱乐活动中,让学生很快融入到新知识的学习中去,并能感受到日常生活与数学紧密联系着,进而激发学生的求知欲。
(二)复习导学 形成概念
1.复习平行四边形性质:(课件演示)
2.推动平行四边形活动木框上边的D点
(1)问题:你发现什么?(引导学生观察)
木框随四个内角大小发生变动,但仍保持平行四边形形状。(为什么)
(2)在推动过程中,当一个内角变为直角时,木框形状为特殊的平行四边形,即为小学已学过的长方形,现称为矩形。(学生配合教师推动框架,测量角度)
(3)定义:有一个角是直角的平行四边形是矩形。(课件演示)
3.展示生活中关于矩形的图案。(学生举例)
木门、纸张、电脑显示器等。
【设计意图】通过实物展示、课件演示、动手操作,使学生对平行四边形变为矩形的形成过程有一个连续完整的认识,感知到矩形的'形成过程是平行四边形的一个角由量变到质变的变化过程。这样,有利于培养学生分析问题和解决问题的能力。
(三)自主探究 归纳性质
1.矩形的性质:
(1)复习归纳
由上面教学过程中知:有一个角是直角的平行四边形是矩形,记作矩形ABCD. 矩形既然为特殊的平行四边形,则它必然是中心对称图形,故具备平行四边形的所有性质。(引导学生复习从“边、角、对角线”上给出的平行四边形的性质,这些性质也是矩形所具有的性质。)
边——对边平行且相等;角——对角相等;对角线——对角线互相平分。
(2)探究矩形与平行四边形的联系与区别:(矩形除了上述性质外,本身还有什么独有的性质呢?)
①它是否为轴对称图形?(学生用长方形纸片折叠,发现它也是轴对称图形,有两条对称轴,即两条通过对边中点的直线。)
②测量矩形的四个角及对角线看看有什么特征?(学生继续探究)
(3)总结出矩形的性质:(课件演示)
① 边:矩形两组对边平行且相等;
② 角:矩形四个角都为直角;
③ 对角线 : 矩形对角线相等且互相平分;
④ 对称性:矩形既是中心对称图形,又是轴对称图形。
【设计意图】在复习平行四边形性质和探究矩形性质时,都是引导学生从“边、角、对角线及对称性”入手探究,并通过适当的类比迁移,数学说理,来分析矩形与平行四边形的联系与区别,进而揭示矩形的概念和性质。这样既符合平面几何研究问题的一般方法和认知规律,又便于学生加深对矩形性质定理的理解和掌握,同时也突出了本课时的教学重点。
2.回答课前的情境设疑。(课件演示)
3、讨论交流 探究新知。
(1)如图,矩形ABCD的对角线AC与BC交于点O,请找出相等的线段,并说出理由。(课件演示)
在矩形ABCD中,AC与BD
交于O点,则BO是Rt△ABC中的一条怎样的特殊线段?它与AC有怎样的大小关系?
学生小组讨论得出: BO是Rt△ABC中AC边上的中线且
AO=CO=BO=DO=AC=BD
即在Rt△ABC中O为AC的中点,则BO=AC.由此得到直角三角形的一个性质:
直角三角形斜边上的中线等于斜边的一半.
(2)从以上矩形ABCD的两条对角线AC、BD把矩形所分成的四个等腰三角中,不难看出:△AOB≌△COD,△BOC≌≌△DOA.
【设计意图】在探究直角三角形性质时,引导学生从矩形的对角线入手,借助于多媒体课件演示,学生易观察出在Rt△ABC中BO =AC和四个等腰三角形,并正确运用数学语言进行推导判定,这样符合由一般到特殊再到一般的认识规律,使学生较自然的获得数学知识,较好的突破了本课时的难点。
(四)应用举例 加深理解(课件演示)
(1)、讲解例1:如图,矩形ABCD的两条对角线相交于点O,∠AOB=60°,AB=4㎝,求矩形对角线的长.
解:∵ 四边形ABCD是矩形。
∴ AC与BD相等且互相平分.
∴ OA=OB.
∵ ∠AOB=60°。
∴ △AOB是等边三角形.
∴ OA=AB=4㎝.
∴ 矩形的对角线长 AC=BD =2OA=8㎝.
(2)、 由例题变式:如图,在矩形ABCD中,AC与BD相交于O,四个小三角形的周长之和为86cm,AC的
长为13cm,试求矩形的周长.(先让学生独
立探索,再教师引导,师生合作交流.)
【设计意图】通过对例1的改编,涵盖的知识更为全面,内容更为丰富,学生探究起来会更有兴趣和信心。加之师生间的合作交流,能让学生学会运用已学的知识解决简单的推理与计算问题,提高学生运用数学知识解决实际问题的能力,实现本课时的知识目标。
(五)分组练习 巩固提高
A组题:练习课本P95第2、3题,P103第8题。
B组题:(1)矩形OABC中,OA=10,OC=8,在AB边上选取一点D将△OAD沿OD翻折,使点A落在BC边上,设为E点。①求CE的长。②求AD的长.
(2)在矩形ABCD中,两邻边AB、BC之比为3∶4,矩形的周长为28. ①求AC之长;②作BE⊥AC于E,试求BE之长.
【设计意图】A组题来源于课本,注重所学知识的巩固落实,B组题则在此基础上,进一步拓展、延伸相关知识,这样,有利于满足不同层次学生的需求,使学生各有所获。
(六)课堂小结
1、本课时你学到了哪些知识?有何收获?
2、矩形的性质有哪些?(课件演示)
(1)两组对边平行且相等;
(2)四个角都为直角;
(3)对角线相等且互相平分;
(4)既是中心对称图形,又是轴对称图形。
六、板书设计
矩形的性质
1、定义:有一个角是直角的
平行四边形叫做矩形。
2、性质:
(1)两组对边平行且相等。
(2)矩形四个角都是直角。
(3)矩形对角线相等且互相平分。
(4)矩形既是轴对称图形又是中心对称图形。
3、推论:直角三角形斜边上的中线等于斜边的一半。
七、评价与反思
1、本课时通过把问题设置到实际情境中,让学生进一步体会到数学来源于生活,又服务于生活,符合学生的认知特点。教学活动通过学生动手操作,调动了学生主动参与学习过程的积极性,有利于培养学生学习数学的兴趣。在探究活动中,借助于课件和实物演示,帮助学生认识和理解知识形成的过程,使抽象的数学变得可及可见,能收到事半功倍的效果。
2、矩形是在平行四边形的前提下定义的.从定义出发,首先应该肯定矩形是平行四边形,但它是特殊的平行四边形,特殊之处就是有一个角是直角.因此,在教学中,我们采用运动方式探索矩形的概念及性质,用课件和教具演示由平行四边形到矩形的演变过程,得到矩形的概念,并理解矩形与平行四边形的关系,符合由一般到特殊再到一般的认识规律。即,矩形是特殊的平行四边形,具有平行四边形的一切性质(共性),还具有它自己特殊的性质(个性)。在探究性质的过程中始终抓住“边、角、对角线”这几个平面几何中的基本元素进行比较归纳,有利于突出重点、突破难点,便于学生学习、理解和掌握相关知识。
【微语】我们只有一个童年和周末,为什么要用它去早早入梦?
微信扫码关注公众号
获取更多考试热门资料