教学目标:
1.通过动手操作和写不同的乘法算式,认识倍数和因数。
2.依据倍数和因数的含义和已有的乘除法知识,自主探索并总结找一个数的倍数和因数的方法。
3.在探索中,培养学生抽象,概括的能力,渗透事物之间相互联系、相互依存的辩证唯物主义的观点。
教学重点、难点分析:
由于学生对辨析、理清除尽和整除的关系、整除的两种读法等易混淆的概念,使学生明确了一个数是否是另一个数的倍数或因数时,必须是以整除为前提,因数和倍数是相互依存的概念,不能独立存在。所以本节课的教学我把重点定位于理解因数和倍数的含义。教学难点是自主探索并总结找一个数的倍数和因数的方法。
教学课时:人教版五年级下册第二单元《因数与倍数》第一课时
教具学具准备:
1.学生每人准备12个大小完全相同的小正方形,一张写有自己学号的卡片。
2.教师准备多媒体课件。
一、创设情景,明确探究目标
师:人与人之间存在着许多种关系,我和你们的关系是……?
生:师生关系。
师:对,我是你们的老师,你们是我的学生,我们的关系是师生关系。在数学中,数与数之间也存在着多种关系,这一节课,我们一起探讨两数之间的因数与倍数关系。(板书课题:因数与倍数)
1.操作激活。
师:我们已经认识了哪几类数?
生:自然数,小数,分数。
师:现在我们来研究自然数中数与数之间的关系。请你们用12个小正方形摆成不同的长方形,并根据摆成的不同情况写出乘、除算式。
2.全班交流。
1×12=12 2×6=12 3×4=12
12×1=12 6×2=12 4×3=12
12÷1=12 12÷2=6 12÷3=4
12÷12=1 12÷6=2 12÷4=3
师:在这3组乘、除法算式中,都有什么共同点?
生汇报。
师:(指着第②组)像这样的乘、除法式子中的三个数之间的关系还有一种说法,你们想知道吗?请看课本p12。
师:2和6与12的关系还可以怎样说呢?
生:2和6是12的因数,12是2的倍数,也是6的倍数。
师:也就是说,2和12、6的关系是因数和倍数的关系,这几组算式中,谁和谁还有因数和倍数的关系?
小组合作,交流汇报。
师:说得真好,从上面3组算式中,我们知道1,2,3,4,6,12都是12的因数。
揭示课题:今天我们要根据这些算式研究数学新本领。因数和倍数。
师:你能不能用同样的方法说说另一道算式?
(指名生说一说)
师:你有没有明白因数和倍数的关系了?
那你还能找出12的其他因数吗?
3.举例内化:
你能写出一个算式,让你的同桌找一找因数和倍数吗?(学生互说,教师巡视找出典型例子)
4.下面的说法对吗?说出理由。
(1)48是6的倍数。
(2)在13÷4=3……1中,13是4的倍数。
(3)因为3×6=18,所以18是倍数,3和6是因数。
师:第(3)题有两种不同的意见,请反对意见的同学说说理由。
生:因为没有说明18是谁的倍数,所以不对。
师:你认为怎样说才正确呢?
生:我认为应该这么说:18是3和6的倍数,3和6是18的因数。
师强调:在说倍数(或因数)时,必须说明谁是谁的倍数(或因数)。不能单独说谁是倍数(或因数),也就是说:因数和倍数不能单独存在。
二、自主探究,找因数和倍数
1.拓展提升,主动建构:
⑴迁移尝试:请学生试着找出36的所有因数。
⑵交流方法:教师即时捕捉开发学生在课堂上的基础性教学资源,并及时创生为生成性的教学资源,引导学生在交流中评价,在评价中探究,在发现中建构。预计学生会有这样几种情况出现:一是写得多与少的区别,二是找的方法上的区别。具体表现为:一是无序、没有方法地写出了一些,如2,3,6,而且仅此写出了几个;二是有顺序地用乘法( )×( )=36的方法,一对一对地写出了1,36,2,18,3,12,4,9,6,但没有按照从小到大的顺序写;三是用除法36÷( )=( )的方法想,而且是有顺序地从小到大全部写出: 1,2,3,4,6,9,12,18,36。
⑶启迪思考:怎样找才能不重复不遗漏?
小组合作,自主探究,汇报交流。
找一个数的因数时要做到不重复也不遗漏,方法可以有:
用乘法( )×( )=36的方法,一对一对地写;
或者是用除法36÷( )=( )的方法想,而且是有顺序地从小到大全部写。
36的因数有:1,2,3,4,6,9,12,18,36。(板书)
⑷试一试找20的所有因数。
⑸介绍36的因数的另一种写法——集合
用集合形式写18的因数
2.创设情境,自主探究:
请学生写出6的倍数。预计学生在写6的倍数时,会有这样几种情况出现:一是写得多与少的区别,二是找的方法上的区别。具体表现为:一是无序、没有方法地写出了一些,6二是有顺序地用乘法口诀写6,三是用加法的方法,每次递加6;四是用除法想,( )÷6=1、( )÷6=2、( )÷6=3的方法写。同时可能还会有学生在教师宣布时间到的时候会因为6的倍数写不完而抱怨时间太少。
请写得又多又快的同学介绍自己的好方法、小窍门。在此基础上交流评价小结方法。(评价时突出有序思维的策略)
3.迁移内化,自主探究:
⑴尝试迁移:请学生尝试迁移,用自己喜欢的方法写出2的倍数和5,4,7的倍数。
2的倍数有:2,4,6,8,10,12……
5的倍数有:5,10,15,20,25……
⑵引导观察:请学生观察以上这些数的倍数,有什么发现?
(一个数的倍数的个数是无限的,一个数最小的倍数是它本身。)
(3)还记得因数吗,出示课件
观察:看一看这些数的因数,你有什么发现?(36最小的因数是1,最大的是36,……一个数最小的因数是1,最大的因数是它本身。)
三、变式拓展,实践应用
指导学生做书本“练习二”的第2题和第3题。
四、全课总结
师:今天这节课我们一起学习了“约数和倍数”,你有哪些收获?
课堂练习:游戏:“我的朋友在哪里?”
游戏规则:
(1)一位同学提出所要找的朋友的要求,例:“我的因数在哪里?”或“我的倍数在哪里?”
(2)相应学号的同学站起来,其他同学判断是否正确。
作业安排:
引导学生根据实际猜老师年龄,给出范围:老师的年龄既是2的倍数也是5的倍数
教学内容:
教学目标:
1、让学生理解倍数和因数的意义,掌握找一个非零自然数的倍数与因数的方法,发现一个非零自然数的倍数和因数中最大的数、最小的数以及一个非零自然数的倍数与因数个数的特征。
2、让学生初步意识到可以从一个新的角度,即倍数和因数的角度来研究非零自然数的特征及其相互关系,培养学生观察、分析与抽象概括的能力,体会数学学习的奇妙,对数学产生好奇心。
教学重点:理解倍数和因数的意义。
教学难点:从倍数和因数的意义出发,寻找一个非零自然数的倍数与因数。
教学过程:
一、直接导入
师:自然数是我们在数的王国中认识的第一种数,今天我们将从一个特定的角度,即倍数和因数的角度来研究自然数的特征及其相互关系。(板书课题:倍数和因数)
[评析:课始直接进入主题,揭示本节课新知识研究的方向,使学生产生探究新知的心理需求。]
二、教学倍数和因数的意义
(屏幕出示12个完全相同的正方形)
师:用这12个完全相同的正方形,能拼出一个长方形吗?(生:能)你能用一道乘法算式,表示你拼出的长方形吗?
生:我可以拼出一个3×4的长方形。
师:你们猜猜看,这会是一个什么样的长方形?
生:每排摆3个正方形,摆4排;或每排摆4个正方形,摆3排。(课件演示学生所猜的长方形,并让学生明白这两种拼法其实是相同的)
生:我还可以拼出一个2×6的长方形。
生:我还可以拼出一个1×12的长方形。(师问法同上,略)
师:同学们可别小看这三道算式,今天我们学习的内容,就将从研究这三道乘法算式拉开帷幕。
[评折:准确把握学生的学习起点,让学生根据所列乘法算式猜想可能拼成的长方形,大屏幕随之展示学生猜想的长方形,更加激起学生的求知欲。]
师:根据3×4=12,我们可以说(屏幕出示):12是3的倍数,12也是4的倍数;3是12的因数,4也是12的因数。
师:同学们一起来读一读,感受一下。
师:你读懂了些什么?(引导学生感知什么是倍数、什么是因数,即倍数和因数的意义;明白在乘法算式中,积就是两个乘数的倍数,两个乘数就是积的因数)
师:请你从6×2=12和12×1=12这两道算式中任选一题,用上面的话说一说。
师(出示18÷3=6):谁是谁的倍数?谁是谁的因数?为什么?
生:因为18/3=6可以改写成3×6=18,所以18是3和6的倍数,3和6是18的因数。(引导学生明白根据乘除法的互逆关系,在除法算式中也可以说谁是谁的倍数、谁是谁的因数)
屏幕出示:4是因数,24是倍数。
师:这句话对吗?(让学生理解倍数和因数是两个数之间的相互依存关系,必须说谁是谁的倍数、谁是谁的因数)
师:我们再看屏幕上这三道乘法算式(1×12=12、2×6=12、3×4=12),善于观察的同学一定发现在这三道乘法算式中。我们其实已经找到了12的所有因数,你知道都有哪些吗?(引导学生说一说)
屏幕出示一组数:36、4、9、0、5、2。
师:请你从这组数中任选两个数,用倍数和因数的关系来说一说。(生可能会选36和4、36和9、4和2这几组数)
设疑:
(1)为什么不选0呢?(让学生理解倍数和因数是针对非零的自然数)(屏幕演示将“0”去掉)
(2)为什么不选5呢?(例如36和5,因为找不到一个自然数和5相乘能得到36,或者36除以5有余数)(屏幕演示将“5”去掉)
(3)去掉了0和5,剩下的这些数和36有什么关系呢?(它们都是36的因数,或36是它们的倍数;当然,36也是36的因数,36也是36的倍数)
[评析:倍数和因数意义的学习层次分明。
(1)猜想:由1-2个完全相同的正方形拼成一个长方形的不同拼法,得出三道乘法算式。根据3×4=12这道算式中三个数的关系,让学生初次感知倍数和因数的意义。
(2)拓展:根据除法算式中“存在一个自然数等于两个自然数乘积”这一条件,揭示除法算式中依然存在着倍数和因数的关系,拓展了对倍数与因数意义的理解。
(3)深化:探索并感知倍数和因数的相互依存关系。“从一组数中任选两个数”说意义的训练,巩固与深化了对倍数和因数意义的理解。]
三、探讨找一个数的因数的方法
1、师:在刚才这组数(36、4、9、0、5、2)中,2、4、9和36都是36的因数。除了这些,36的因数还有吗?(生一个一个地举例)这样一个一个杂乱无序地找,你们觉得这种方法好吗?(生:不好!)不好在哪儿呢?
生:容易漏掉或重复。
师:你们有没有什么好办法,能一个不落地将36的所有因数都找到呢?同学们可以独立完成这个任务,也可以同桌的两位同学合作完成。如果你全部找到了,就请将36的所有因数写在练习纸上。同时将你找因数的方法写在横线的下方。(教师巡视,学生讨论交流)
展示学生的作品,学生可能出现的答案有:
(1)根据1×36=36、2×18=36……分别得出1、36、2、18、3、12、4、9、6等数都是36的因数;
(2)利用36÷1=36,36÷2=18……也可以得出1、36、2、18、3、12、4、9、6等数都是36的因数。
在写法上,可能出现的答案为1、36、2、18、3、12、4、9、6(一对一对地写),或按照从小到大的顺序写,即1、2、3、4、6、9、12、18、36。然后引导学生比较这两种写法的不同。将方法优化:运用除法算式一对一对地找一个数的因数更为简便,并且不重复、不遗漏,做到答案的完整性;在写的时候,可以一头一尾地写,这样可以做到答案的有序性。(板书:有序、完整)
2、探讨一个数的因数的特征。
课件出示12的因数、15的因数和36的因数。(从小到大排列)
学生观察、讨论下面的问题(课件出示问题):一个非零自然数的因数的个数是有限的还是无限的?一个非零自然数的最大因数是几?一个非零自然数的最小因数是几?
课件出示描述一个非零自然数的因数的特征的表格(如下),学生讨论、交流后再反馈。
师(小结):一个非零自然数的最大因数是它本身,最小因数是1,因数的个数是有限的。
[评析:找一个数的因数是本节课的教学难点。教学中,教师调整教材的编排顺序,先学习找一个数的因,数,通过置疑“一个个地找36的因数,这种方法好吗?不好在哪”,启发学生根据因数的意义和乘除法的互逆关系,有序地找出36的所有因数,并及时优化方法。同时,引导学生自主探索,在观察中发现一个数的因数的有关特征,最后进行总结,培养了学生解决问题的能力。]
四、探讨找一个数的倍数的方法
1、师:我们已经掌握了如何有序地、完整地找出一个非零自然数的所有因数的方法。如果让你找出一个数的所有倍数,你会找吗?(生:会)那么,我们就一起来找找3的倍数。(学生试着找出3的倍数,教师巡视,对有困难的学生给予帮助)
2、师:你是怎样有序地、完整地找出3的倍数的?
生:用3分别乘1、2、3……得出3的倍数。
生:用3依次地加3得到3的倍数。
师:你认为哪种方法能更迅速地找出3的倍数?(学生讨论交流)
师:3的倍数能找得完吗?(生:找不完)那么,可以怎样表示3的倍数的个数呢?(生:用省略号表示)(相机板书:3、6、9、12、15……)
3、写出30以内5的倍数。(做在练习纸上)
4、课件出示3的倍数、4的倍数、5的倍数,让学生从最大倍数、最小倍数、倍数的个数三个方面去描述一个数的倍数的特征(见下表)。
师(小结):一个非零自然数的最小倍数是它本身,没有最大的倍数,所以倍数的个数是无限的。
[评析:借助学习一个数的因数的方法,以此为基础,让学生自主探索找一个数的倍数的方法。在探索交流中,优化寻找一个数的倍数的方法,获得一个数的倍数的特征。]
五、组织游戏,深化认识
师:这节课,我们通过三道乘法算式与倍数和因数进行了两次的亲密接触。第一次的接触,让我们了解了倍数与因数的意义;第二次的接触,通过找一个数的倍数和因数,我们了解了一个数的倍数和因数的特征。通过这两次的亲密接触,相信 同学们对于今天所学的知识,已经有了比较深刻的理解。下面,就让我们轻松片刻。一起来玩一个特别好玩的游戏,感兴趣吗?
游戏——请到我家来做客
(每位学生的手中,都有一张写有该名学生的学号卡片)
课件演示并配有话外音:春天来了,浓浓的春天气息让森林里好客的小动物们,纷纷拿出自己最珍贵的食物款待大家。
(1)屏幕上出现了可爱的小狗向同学们走来(配音):24的因数是我的朋友。如果你卡片上的数是24的因数,欢迎你,我的朋友!(卡片上的数若符合要求,就请这位学生站起来)
(2)屏幕上出现了笨笨的小猪向同学们挥手(配音):我邀请的朋友是5的倍数,喜欢我,就快快来吧!
(3)瞧!可爱的小猫咪也来了。(屏幕上出现了俏皮、可爱的小猫咪)配音:如果你卡片上的数是1的倍数,请来我家做客吧!
(每位学生卡片上的数都符合要求,所以全班学生都站了起来)
师:小猫咪这么好客,老师也想去她家做客。你们来为老师想一个符合要求的数,好吗?(生答略)
师:是不是所有的自然数都可以呢?
生:除了0。
屏幕出示:所有非零自然数都是1的倍数。
(4)配音:威严的老虎来了!它请的朋友很特别,它是所有非零自然数的因数。这个数是几呢?(生讨论交流)
屏幕出示:只有1才符合要求,因为1是所有非零自然数的因数。
六、挑战自我,拓展升华
师:虽然我们只合作了这短短的三十分钟,但老师已经深深感到我们这个班的同学非常聪明,不仅善于观察,而且爱动脑筋,所以老师特别准备了一个富有挑战性的节目想考考大家,你们敢不敢接受挑战?(生:敢!)
挑战——你猜、我猜、大家猜I(屏幕演示动画标题)
规则:下面每组数,去掉一个数,剩下的数便是其中一个数的倍数或因数。你能找出这个数吗?
(1)20、5、4、3。
答案:去掉3(屏幕演示隐去“3”),剩下的数是20的因数,或20是它们的倍数。
(2)4、12、18、3。
答案有两种:一是去掉18(屏幕演示隐去“18”),剩下的数便是12的因数,或12是它们的倍数;二是去掉4(屏幕演示隐去“4”),剩下的数便是3的倍数。
[评析:设计游戏环节,对整节课的知识点进行总结深化,并引导每位学生参与其中,积极主动地思考本节课所学的知识,教学过程真实、有效。]
七、全课总结
师:通过今天这节课的学习,你有什么收获?你们学得开心吗?玩得开心吗?其实。数学就是这么简单而有趣,让我们每天都乐在其中!
总评:
本节课的教学特色是严谨灵活、细腻奔放。在“因数和倍数”概念的学习过程中,重视师生情感的交流,注重每个学生的发展,较好地体现了“教师有效引导下学生自主探索”这一教学策略。
1、意义教学引导学生自主构建。
在多次的实践教学中,发现用12个完全相同的小正方形拼出一个长方形。对于四年级的学生来说非常容易。教材这样安排的目的,在于帮助学生有意识地感受1和12、2和5、3和4这几组数之间的有机联系。
本课中,倍数和因数的意义教学分三个层次:
1、借助三个问题让学生通过想像及大屏幕的直观演示,引导学生得出三道乘法算式,同时介绍倍数和因数的含义。
2、通过除法算式找因倍关系。
3、渗透倍数和因数的相互依存性。
2、合理组织教材,将找一个数的因数及其特征教学提前。
寻找一个数的因数是本节课的教学难点,学生往往满足于答案的寻找,而忽视寻找过程中的思考策略及思维方法。
教学中,教师出示一组数,如36、4、9、0、5、2,让学生从这组数中任选两个数,用倍数和因数的关系来说一说。
最后设疑:
(1)为什么不选O呢?(让学生理解倍数和因数是针对非零的自然数)
(2)为什么不选5呢?(如36和5,因为找不到一个自然数和5相乘能得到36,或者36除以5有余数)
(3)去掉了0和5,剩下的这些数和36有什么关系呢?(它们都是36的因数,或36是它们的倍数)
这样的改变,既达到预定目的,又为学习找因数做了铺垫,引发了学生寻找36的因数的浓厚兴趣。在引导学生自主探索一个数的因数的特征时,教师让学生带着问题去观察讨论:每一个非零自然数的因数的个数是有限的还是无限的?一个非零自然数的最大因数是几?一个非零自然数的最小因数是几?以上安排,降低了学生的学习难度。
3 寻找一个数的因数和倍数的方法让学生自己生成。
在寻找一个数的因数和倍数的过程中。教师将学生推向发现与探索的前台。
寻找一个数的倍数和因数。方法不是惟一的。教师在肯定各种方法合理性的同时,及时引导学生进行沟通,寻找它们的共同点和联系,进而比较各种方法之间的优劣,遴选最优方法,提升思维效率。
4 增强游戏中数学思维的含量。
知识在游戏中深化,在挑战中升华。
本节课以“有效引导下自主探索”为教学策略。以三道乘法算式为线索,以教材文本为依托,以有梯度的游戏活动展开对知识的深化巩固,并适时、适量引入多媒体辅助教学,将诸多细小的认知活动归整在一个探究性的课堂自主研究活动中。通过自主观察、交流发现、共同分享,引领学生经历“研究与发现”的真实过程。课尾游戏的运用,激发了学生的学习热情,让学生以愉快的心情和良好的体验融入学习活动中,培养了学生用数学眼光看待游戏的意识,大大降低了学生对数学概念学习的枯燥体验。
教学目标:
1、使学生初步理解倍数和因数的含义,知道倍数和因数相互依存的关系。
2、使学生依据倍数和因数的含义以及已有乘除法知识,通过尝试、交流等活动,探索并掌握找一个数倍数和因数的方法,能在1—100的自然数中找出10以内某个数的所有倍数,找出100以内某个数的所有因数。
3、使学生在认识倍数和因数以及找一个数的倍数和因数的过程中进一步感受数学知识的内在联系,提高数学思考的水平。
教学重点:
理解因数和倍数的含义,知道它们的关系是相互依存的。
教学难点:
探索并掌握找一个数的因数的方法。
教学准备:
12个小正方形片、每个学生的学号纸。
教学过程设计:
一、认识倍数、因数的含义
1、操作活动。
(1)明确操作要求:用12个同样大的正方形拼成一个长方形。每排摆几个?摆了几排?用乘法算式把自己的摆法记录下来。
(2)整理、交流,分别板书4×3=1212×1=126×2=12
2、通过刚才的学习,我们发现用12个同样的小正方形可以摆出3种不同的长方形,由此,还得出3道不一样的乘法算式。4×3=12可以说12是4的倍数,12也是3的倍数;反过来,4和3都是12的因数。
3、今天我们就来研究倍数和因数的知识。
(揭示课题:倍数和因数)
(1)那其它两道算式,你能说出谁是谁的倍数吗?你能说出谁是谁的因数吗?
指名回答后,教师追问:如果说12是倍数,2是因数,是否可以?为什么?
小结:倍数和因数是指两个数之间的关系,他们是相互依存的。
(2)出示:20×3=60,36÷4=9。同桌相互说一说谁是谁的倍数?谁是谁的因数?
指出:为了方便,我们在研究倍数和因数时,所说的数都是指不是0的自然数。
二、探索找一个数倍数的方法。
1、从4×3=12中,知道12是3的倍数。3的倍数还有哪些?从小到大,你能找到几个?同桌交流自己的思考方法。
2、提问:什么样的数是3的倍数?你能按从小到大的顺序有条理的说出3的倍数吗?能全部说完吗?可以怎么表示?
3、议一议:你发现找3的倍数有什么小窍门?
明确:可以按从小到大的顺序,依次用1、2、3……与3相乘,乘得的积就是3的倍数。
4、试一试:你能用学会的窍门很快地写出2和5的倍数吗?
生独立完成,集体交流。注意用……表示结果。
5、观察上面的3个例子,你发现一个数的倍数有什么特点?
根据学生的交流归纳:一个数的倍数中,最小的是它本身,没有最大的倍数,一个数倍数的个数是无限的。
6、做“想想做做”第2题。
学生填表后讨论:表中的应付元数是怎么算的?有什么共同特点?你还能说出4的哪些倍数?说的完吗?
二、探索求一个数因数的方法。
1、学会了找一个数倍数的方法,再来研究求一个数的因数。
你能找出36的所有因数吗?
2、小组合作,把36的所有因数一个不漏的写出来,看看哪个组挑战成功。并尽可能把找的方法写出来。教师巡视,发现不同的找法。
3、出示一份作业:对照自己找出的36的因数,你想对他说点什么?
4、交流整理找36因数的方法,明确:哪两个数相乘的积等于36,那么这两个数就是36的因数。(一对一对地找,又要按次序排列)
板书:(有序、全面)。正因为思考的有序,才会有答案的全面。
5、试一试:请你用有序的思考找一找15和16的因数。
指名写在黑板上。
6、观察发现一个数的因数的特点。
一个数的因数最小是1,最大是它本身,一个数因数的个数是有限的。
7、“想想做做”第3题。
生独立填写,交流。观察表格,表中的排数和每排人数与24有怎样的关系。
四、课堂总结:学到这儿,你有哪些收获?
五、游戏:“看谁反应快”。
规则:学号符合下面要求的请站起来,并举起学号纸。
(1、)学号是5的倍数的。
(2、)谁的学号是24的因数。
(3、)学号是30的因数。
(4、)谁的学号是1的倍数。
思考:
1、倍数和因数是一个比较抽象的知识,教学中让学生摆出图形,通过乘法算式来认识倍数和因数。用12个同样大的正方形拼一个长方形,观察长方形的摆法,再用乘法算式表示出来,组织交流出现积是12的不同的乘法算式。即:4×3=122×6=121×12=12。根据乘法算式,从学生已有知识出发,学习倍数和因数,初步体会其意义
2、在得出这些乘法算式以后,先根据4×3=12说明12是3和4的倍数,3和4都是12的因数,使学生初步体会倍数和因数的含义。在学生初
步理解的基础上,再让他们举一反三,结合另两道乘法算式说一说。在这一个环节中,我设计了一个练习。即“根据下面的算式,同桌互相说说谁是谁的倍数,谁是谁的因数”第一个是20×3=60,根据学生回答后质疑“能不能说3是因数,60是倍数”,从而强调倍数和因数是相互依存的。第二个是36÷4=9,让学生根据除法算式说出谁是谁的因数,谁是谁的倍数,并追问:你是怎么想的?使学生知道把它转化为乘法算式去说。
在学生有了倍数、因数的初步感受后,再向学生说明:我们在研究倍数和因数时,所说的数一般指不是0的自然数,明确了因数和倍数的研究范围。
3、P71例一:找3的倍数,先让学生独立思考,“你还能再写出几个3的倍数?你是怎样想的?”在学生交流的基础上,适时提出:什么样的数就是3的倍数?你能按照从小到大的顺序有条理地说出3的倍数吗?使学生明确:找3的倍数时,可以按从到大的顺序,依次用1、2、3……与3相乘,而每次乘得的积都是3的倍数。在此基础上,引导学生进一步思考:你能把3的倍数全都说完吗?从而使学生学会规范地表示一个数的所有倍数,并初步体会到一个数的个数是无限的。随后,让学生试着找出2和5的倍数,并正确表达2和5的所有倍数。最后引导学生观察写出的3、2和5的所有倍数,发现一个数的倍数的特点,即:一个数的最小的倍数是它本身,没有最大的倍数。一个数的倍数的个数是无限的。
4、例二:找36的所有因数,准备让学生独立尝试,但这部分内容对学生来说是个难点,所以我采用了四人小组合作的方式让学生试着找出36的所有因数。在找36的因数时,无论想乘法算式还是想除法算式,学生一般都从无序到有序,从有重复或遗漏到不重复不遗漏。所以,我在教学时允许他们经历这样的过程。先按自己的思路、用自己的方法写36的因数,能写几个就写几个,是什么顺序就什么顺序。然后在交流中互相评价,让他们知道一组一组地找比较方便,可以利用乘法算式,按一个因数从小到大的顺序,同时又让他们掌握按次序地书写。此外,结合例题和试一试,通过比较和归纳,使学生明确:一个数的因数的个数是有限的,一个数的因数中最小的是1,最大的是它本身。
5、教材P72第2题让学生解决实际问题在表里填数,把4依次乘1、2、3、……得出“应付元数”,然后思考下面的问题,可以使学生进一步认识把4依次乘1,2,3,……所得的积,就是4的倍数,进一步理解找倍数的方法。第3题也是解决实际问题填写表里的数,并提出问题让学生思考,使学生明确两个相乘的数都是它们积的因数,求一个数的所有因数,可以想乘法一对一对地找出来,理解找一个数的因数的方法。
为了提高学生学习兴趣,巩固所学的知识。最后安排了一个游戏,让学生在游戏中进一步练习找一个数倍数或因数的方法。
一、说教材
(1)教材的地位和前后关系:在学习本单元之前,学生已经认识了百以内、千以内、万以内、亿以内以及一些整亿的数。但这只是对数字的浅在认识,为学生进一步学习公倍数和公因数,以及分数的约分、通分和四则运算奠定基础。
(2)教学目标:
知识、技能目标:
1.让学生理解倍数和因数的意义,掌握找一个数的倍数和因数的方法,发现一个数的倍数、因数中最大的数、最小的数及其个数方面的特征。
情感、价值目标:
2.让学生初步意识到可以从一个新的角度来研究非零自然数的特征及其相互关系,培养学生的观察、分析和抽象概括能力,体会教学内容的奇妙、有趣,产生对数学的好奇心。
(3)教学重点:
理解倍数和因数的含义与方法
(4)教学难点:
掌握找一个数的倍数和因数的方法。
二、谈设计理念首先从学生的操作入手,由浅入深,利用学生对乘法运算以及长方形的长、宽和面积关系的已有认识,在操作中引出倍数和因数的概念。
其次以学生讨论、交流、相互评价,促成学生对找一个数的倍数、一个数的因数的方法进行优化处理,提升、巩固学生方法表达的完整性、有效性,避免学生只掌握了方法的理解,而不能全面的正确的表达。
三、谈教学过程:
(1)合作交流、揭示主题
用12个大小完全相同的小正方形,进行不同的摆法展示,为了避免简单的操作,引导学生通过算式来想他是怎么摆的。组织交流,引出算式与概念鉴定。
(2)教学概念、正反促成
利用横里读、竖里读,形成了比较系统的知识概念,并及时出示整个前提:是在不含0的自然数,让学生自己举例,示范说、相互说,最后以教师举学生不容易想到了例子:4×4=16,18÷6=3,促成学生不仅从乘法的角度去思考,而且也可以从除法的角度进行,也为后面找一个数的因数的方法做好伏笔。
(3)设疑,置疑,激发学生的反思力度
在教学找一个数的倍数时,“才说到12、18是3的倍数,3的倍数是不是只有12、18这两个数呢?”组织交流:3的倍数有哪些呢?同学互评,交流形成自己的学习成果,提高形成了知识的整体性教学,加大了探索的力度,提高了思维的难度,“分钟内你们写完了吗?如果再给半分钟呢?为什么?”
(4)判断中进行教学内容的递深,形成了反思、学习、强化的整个学习过程。在学生做出“6是倍数”的正确判断之后,并不简单换章,而是以此为契机
“教学找一个数的因数”以谈话导入,形成知识相互的联系与区别,
“谈话:必须说清谁是谁的倍数,谁是谁的因数。所以6可能是某些数的倍数,也可能是某些数的因数,那我们就来找一个数的因数。你能找出36所有的因数吗?”
(5)讨论互评,自主学习
放手让学生学习找一个数的因数,从无序到有序,从自寻到互学,请学生板书,
学生评价,“提问:你是用什么方法找到一个数的因数,可以介绍给大家吗?还有其他方法吗?”
1×36=3636÷1=36
2×18=3636÷2=18
3×12=3636÷3=12
4×9=3636÷4=9
6×6=3636÷6=6
(6)自主不失指导,掌握不失总结
如:提问:5为什么不是36的因数?(因为36÷5不能整除,有余数)
小结:不能被这个数整除的数就不是这个数的因数。
小结:我们即可以从乘法算式,也可以从除法算式找到一个数的因数。
提问:那对于一个数的因数从36的因数、15的因数这两个例子又有什么发现?
总结:对于一个数的倍数和因数,它们是不同的,但通过乘法算式、除法算式又是相互依存的、相互联系的。
四、教学板书
可根据情况自行设计。
一、说教材
(1)教材的地位和前后关系:在学习本单元之前,学生已经认识了百以内、千以内、万以内、亿以内以及一些整亿的数。但这只是对数字的浅在认识,为学生进一步学习公倍数和公因数,以及分数的约分、通分和四则运算奠定基础。
(2)教学目标:
知识、技能目标:
1.让学生理解倍数和因数的意义,掌握找一个数的倍数和因数的方法,发现一个数的倍数、因数中最大的数、最小的数及其个数方面的特征。
情感、价值目标:
2.让学生初步意识到可以从一个新的角度来研究非零自然数的特征及其相互关系,培养学生的观察、分析和抽象概括能力,体会教学内容的奇妙、有趣,产生对数学的好奇心。
(3)教学重点:
理解倍数和因数的含义与方法
(4)教学难点:
掌握找一个数的倍数和因数的方法。
二、谈设计理念
首先从学生的操作入手,由浅入深,利用学生对乘法运算以及长方形的长、宽和面积关系的已有认识,在操作中引出倍数和因数的概念。
其次以学生讨论、交流、相互评价,促成学生对找一个数的倍数、一个数的因数的方法进行优化处理,提升、巩固学生方法表达的完整性、有效性,避免学生只掌握了方法的理解,而不能全面的正确的表达。
三、谈教学过程:
(1)合作交流、揭示主题
用12个大小完全相同的小正方形,进行不同的摆法展示,为了避免简单的操作,引导学生通过算式来想他是怎么摆的。组织交流,引出算式与概念鉴定。
(2)教学概念、正反促成
利用横里读、竖里读,形成了比较系统的知识概念,并及时出示整个前提:是在不含0的自然数,让学生自己举例,示范说、相互说,最后以教师举学生不容易想到了例子:4×4=16,18÷6=3,促成学生不仅从乘法的角度去思考,而且也可以从除法的角度进行,也为后面找一个数的因数的方法做好伏笔。
(3)设疑,置疑,激发学生的反思力度
在教学找一个数的倍数时,“才说到12、18是3的'倍数(板书:3的倍数),3的倍数是不是只有12、18这两个数呢?”组织交流:3的倍数有哪些呢?同学互评,交流形成自己的学习成果,提高形成了知识的整体性教学,加大了探索的力度,提高了思维的难度,“分钟内你们写完了吗?如果再给半分钟呢?为什么?”
(4)判断中进行教学内容的递深,形成了反思、学习、强化的整个学习过程。在学生做出“6是倍数”的正确判断之后,并不简单换章,而是以此为契机
“教学找一个数的因数”以谈话导入,形成知识相互的联系与区别,
“谈话:必须说清谁是谁的倍数,谁是谁的因数。所以6可能是某些数的倍数,也可能是某些数的因数,那我们就来找一个数的因数。你能找出36所有的因数吗?”
(5)讨论互评,自主学习
放手让学生学习找一个数的因数,从无序到有序,从自寻到互学,请学生板书,
学生评价,“提问:你是用什么方法找到一个数的因数,可以介绍给大家吗?还有其他方法吗?”
1×36=3636÷1=36
2×18=3636÷2=18
3×12=3636÷3=12
4×9=3636÷4=9
6×6=3636÷6=6
(6)自主不失指导,掌握不失总结
如:提问:5为什么不是36的因数?(因为36÷5不能整除,有余数)
小结:不能被这个数整除的数就不是这个数的因数。
小结:我们即可以从乘法算式,也可以从除法算式找到一个数的因数。
提问:那对于一个数的因数从36的因数、15的因数这两个例子又有什么发现?
总结:对于一个数的倍数和因数,它们是不同的,但通过乘法算式、除法算式又是相互依存的、相互联系的。
四、教学板书
可根据情况自行设计。
尊敬的各位领导、老师:
大家上午好!我们团队所执教的是《因数和倍数》。
一、说教材:
《因数和倍数》是小学人教版课程标准实验教材五年级下册第二单元的内容,也是小学阶段“数与代数”部分最重要的知识之一。《因数和倍数》的学习,是在初步认识自然数的基础上,探究其性质。其中涉及到的内容属于初等数论的基本内容,相当抽象。在这一内容的编排上与以往教材不同,没有数学化的语言给“整除”下定义,而是在本课时通过乘法算式借助整除的模式na=b直接给出因数与位数的概念。这节课是因数与倍数的概念的引入,为本单元最后的内容,以及第四单元的最大公因数,最小公倍数提供了必须且重要的`铺垫。
根据教材所处的地位和前后关系,确定了以下目标:
知识技能目标:
掌握因数倍数的概念,理解因数与倍数的意义,掌握找一个数因数与倍数的方法。
情感,价值目标:
培养学生合作、观察、分析和抽象概括能力,体会教学内容的奇妙、有趣,产生对数学的好奇心和求知欲。
教学重点和难点:
理解倍数和因数的意义,掌握找出一个数因数和倍数的方法。
二、学情分析:
学生在平时学习中缺少主动性,一部分学生怕困难,缺乏独立思考的习惯,同时考虑问题也不够全面。在本堂课的教学中,主要调动学生学习的积极性,提高学生课堂学习的参与性,体验成功的乐趣,通过学生的亲自探索和合作交流,来达到学习知识,掌握所学知识的目的。同时感受数学中的奥妙。
三、教法与学法指导
当今社会,人类的语言离不开素质教育,而实施素质教育必须“以学生为本”课堂教学要围绕培养学生的探索精神、创新精神出发,为全面提高学生的综合素质打下一定的基础。本节课根据学生的认知能力与心理特征来进行教学策略和方法的设计。
1、遵循学生主体,老师主导,自主探究,合作交流为主线的理念,利用学生对乘法的运算理解概念。
2、小组合作讨论法。以学生讨论,交流,互相评价,促成学生对找一个数的因数和倍数的方法进行优化处理,提升。巩固学生方法表达的完整性,有效性,避免学生只掌握方法的理解,而不能全面的正确的表达。
四,教学过程
1、揭示主题
老师直接揭示主题,大胆创新,打破了传统的为了导入而导入的教学模式。为学生的自主合作学习提供了开放的空间。
2、合作交流,理解因数,倍数的概念及其意义。
教师出示前置性作业,小组内交流,汇报学习成果,教师适时点拨,真正把课堂还给学生,也充分体现了教师的主导作用和学生的主体地位。使学生在交流中培养了合作学习的意识,对因数和倍数的概念有了初步的认识,对它们之间的联系也有了更好的理解。
3、学习求一个数的因数和倍数的方法
一个数的因数和倍数是本节课中技能目标中很重要的一部分。使学生在已有的经验基础上,独立的列举一个数的因数,在小组合作交流中得出。找一个数的因数和倍数的方法。真正地把主动权交给学生,教师通过引导,使学生加深理解,化解难点。
4、引导学生分析,比较归纳寻找共性,找出不同,得出一个数的因数,使学生学会有序思考,从而形成基本技能与方法,做到即关注了过程,又关注了结果。教师的教学水到渠成,学生的学习则是山重水复疑无路,柳暗花明又一村。
5、引导学生置疑,集体交流,化解疑问
便于学生对本课所学知识更好的消化理解。
五、练习
练习题设计形式多样,有梯度。既注重基础,又有所提高,从而真正实现了课堂教学的有效性。
因数和倍数说课稿
一、说教材
《倍数和因数》是小学人教版课程标准实验教材五年级下册第2单元的内容,也是小学阶段“数与代数”部分最重要的知识之一。《因数和倍数》的学习,是在初步认识自然数的基础上,探究其性质,其中涉及到的内容属于初等数论的基本内容,相当抽象。在这一内容的编排上与以往的教材有所不同,没有数学化的语言给“整除”下定义,而是在本课时通过乘法算式借助整除的模型na=b直接给出因数与倍数的概念。在地位上,这节课是因数、倍数的概念引入,为本单元后面的内容、以及第四单元的最大公因数、最小公倍数提供了必需且重要铺垫。(注:教学目标、教学重、难点略)
二、说学情分析
本节课内容是五年级下册的内容,但采取借班上课的形式,选取了四年级的学生。在此之前,学生已经已经分段认识了亿以内的整数,基本完成了整数四则运算的学习(本学期刚学完)。但学生由于年龄的关系和个人思维发展的不同,在抽象能力和语言表达和思考的全面性方面需要老师的进一步引导。但由于本课是由乘法引入,且减少了以前老教材关于“整除”等繁杂概念,大大简化了叙述和记忆的过程,预期学生是可以理解并掌握的。
三、说设计理念
本节课的在设计理念上,本人总结四点特点,而这四个特点也
刚好在我教学的四个环节中生成:
第一,从生活切入,实现数形结合,完成概念的有意义建构。
数论的内容,如果从数字本身出发进行研究,对小学生来说就抽象了些。本节课,教师以解决问题“12个小正方形拼成一个长方形,有哪几种拼法?”为引子,让学生在解决这个问题的过程中,学习数学概念,避开了抽象,有利于帮助学生完成有意义的建构。同时,在解决问题时,学生思考“哪几种拼法”时,教师给出了不同的建议,可以想象,也可以在本子上画一画,这样既符合不同的学生思维发展有不同,老师有针对的引导,其次,使数与形有机地结合,这样,学生对概念的理解不仅是数字上的认识,而且能与操作活动与图形描述联系起来。学生经历了“先形后数”的过程,也就是知识抽象的过程。
第二,抓住学生思维的“最近发展区”,促使学生学会有序思考,从而形成基本的技能与方法。
能列举一个数的因数,是本节课技能目标中很重要的一部分。教学活动中,教师牢牢的抓住了学生思维的“最近发展区”,让学生在已有经验的基础上,独立的列举一个数的因数,在集体交流的过程中,教师适时的追问“用什么方法找的?”,让学生充分暴露个性化的思考方法,教师点拨出学生思维中各自的优势:一对一对的找;从“1”开始有序的找,再通过有效分析,取得学生整体的认同。这样的设计,让学生在独立思考——集体交流——互相讨论过程中,学习有序思考,从而形成基本技能与方法,做到即关注了过程,又关注了结果。
第三,充分借助生成的素材,实现有效的合作探索,引导学生在比较中归纳寻找共性。
一个数的因数的特征,单凭记忆也不难接受,为防止学生进行“机械学习”,教师提出问题“任意一个自然数的因数有什么特点?”,让学生观察6、11、16和24的因数,思考:一个数的因数的个数是有限的.还是无限的?其中最小的是几?最大的是几?教师在研究方法方面给学生提供了引导,学生的思维有了明确的指向,便于通过探索发现规律。
第四,重视数学意义的渗透与拓展,力求用数学的本质吸引学生,促进学生学习数学的持续发展。
数学教学,要树立为学生的继续学习、终身发展服务的意识,不能关注短效、急功近利。本节课的设计,教师就注意到了学生的学习后劲。如在备课之初,在是否需要完美数的介绍这一抉择上,教师反复考虑:由于一节课的时间有限,为表达因数与倍数的整体关系,很多老师在设计内容时,都在一个课时就将求因数和求倍数的方法全部包含。但最终本人选择舍去求倍数,把它放在了后面的课时学习,将完美数的介绍以及小故事纳入本节课的教学,虽然此内容和现行学习任务之间的关系都不大,但却是学生继续学习数学所需要的,因为只有有了文化的气息,数学才变得有了灵魂,让学生感觉数学的厚重、数学的魅力,才能让学生透过枯燥,产生对数学的积极情感,增强学习数学的持久动力。
四、说教学效果
上完课后,一些老师认为有部分学生并掌握到教学目标里的知识技能目标,未掌握到有效的方法,学生思维水平与表达方式有限,把这个内容拿来在四年级上并不合适。首先,本人认为,教师这节课的引导是有不足的,教学目标并未很好的实施。本人也曾经看过有大量名师找了四年级甚至三年级的学生上过这节课。从理论上说,只要基本能完成整数乘除法的学习的学生都可以进行这部分的学习。当然,放在每个年级来上出现的效果理应都会有不同。同样,这节课四年级的学生有着他们自己的思维水平,由于学生的思维发展水平有限,出现一些思维的无序是非常合理的,作为老师不能太关注短效,不能太急功近利。然而,究竟是否该放在四年级来上,如果可以上,究竟怎样把握教法与学法的度,各家之谈,本人仅是做了一次不成熟的尝试,只希望抛砖引玉,老师们可以给出更多的意见,作为一次有意义的谈论
《倍数和因数》说课稿范文
一、说教材
(1)教材的地位和前后关系:在学习本单元之前,学生已经认识了百以内、千以内、万以内、亿以内以及一些整亿的数。但这只是对数字的浅在认识,为学生进一步学习公倍数和公因数,以及分数的约分、通分和四则运算奠定基础。
(2)教学目标:知识、技能目标:
1.让学生理解倍数和因数的意义,掌握找一个数的倍数和因数的方法,发现一个数的倍数、因数中最大的数、最小的数及其个数方面的特征。
情感、价值目标:
2.让学生初步意识到可以从一个新的角度来研究非零自然数的特征及其相互关系,培养学生的观察、分析和抽象概括能力,体会教学内容的奇妙、有趣,产生对数学的好奇心。
(3)教学重点:理解倍数和因数的含义与方法
(4)教学难点:掌握找一个数的倍数和因数的方法。
二、谈设计理念
首先从学生的操作入手,由浅入深,利用学生对乘法运算以及长方形的长、宽和面积关系的已有认识,在操作中引出倍数和因数的概念。
其次以学生讨论、交流、相互评价,促成学生对找一个数的倍数、一个数的因数的'方法进行优化处理,提升、巩固学生方法表达的完整性、有效性,避免学生只掌握了方法的理解,而不能全面的正确的表达。
三、谈教学过程:
(1)合作交流、揭示主题
用12个大小完全相同的小正方形,进行不同的摆法展示,为了避免简单的操作,引导学生通过算式来想他是怎么摆的。组织交流,引出算式与概念鉴定。
(2)教学概念、正反促成
利用横里读、竖里读,形成了比较系统的知识概念,并及时出示整个前提:是在不含0的自然数,让学生自己举例,示范说、相互说,最后以教师举学生不容易想到了例子:4×4=16,18÷6=3,促成学生不仅从乘法的角度去思考,而且也可以从除法的角度进行,也为后面找一个数的因数的方法做好伏笔。
(3)设疑,置疑,激发学生的反思力度
在教学找一个数的倍数时,“才说到12、18是3的倍数(板书:3的倍数),3的倍数是不是只有12、18这两个数呢?”组织交流:3的倍数有哪些呢?同学互评,交流形成自己的学习成果,提高形成了知识的整体性教学,加大了探索的力度,提高了思维的难度,“分钟内你们写完了吗?如果再给半分钟呢?为什么?”
(4)判断中进行教学内容的递深,形成了反思——学习——强化的整个学习过程。在学生做出“6是倍数”的正确判断之后,并不简单换章,而是以此为契机
“教学找一个数的因数”以谈话导入,形成知识相互的联系与区别。
“谈话:必须说清谁是谁的倍数,谁是谁的因数。所以6可能是某些数的倍数,也可能是某些数的因数,那我们就来找一个数的因数。你能找出36所有的因数吗?”
(5)讨论互评,自主学习
放手让学生学习找一个数的因数,从无序到有序,从自寻到互学,请学生板书。
学生评价,“提问:你是用什么方法找到一个数的因数,可以介绍给大家吗?还有其他方法吗?”
1×36=36
36÷1=36
2×18=36
36÷2=18
3×12=36
36÷3=12
4×9=363
6÷4=9
6×6=36
36÷6=6
(6)自主不失指导,掌握不失总结
如:提问:5为什么不是36的因数?(因为36÷5不能整除,有余数)
小结:不能被这个数整除的数就不是这个数的因数。
小结:我们即可以从乘法算式,也可以从除法算式找到一个数的因数。
提问:那对于一个数的因数从36的因数、15的因数这两个例子又有什么发现?
总结:对于一个数的倍数和因数,它们是不同的,但通过乘法算式、除法算式又是相互依存的、相互联系的。
四、教学板书(略)
数学四年级下册说课稿 《倍数和因数》
一、教材分析。
倍数和因数一课是苏教版数学第八册中的内容。这一内容是在学生已经分阶段认识了百以内、千以内、万以内、亿以内以及一些整亿的数,较为系统地掌握了十进制记数法,同时也基本完成了整数四则运算基础上进行的教学,主要是要使学生初步认识倍数和因数的意义,学会在1-100的自然数中找10以内某个数的所有倍数和100以内某个数的所有因数的方法。这是学生进一步学习公倍数和公因数,以及分数的约分、通分和四则运算的基础,对以后的学习起着重要的作用。
二、教学目标及重点和难点。
1、知识与技能目标:使学生结合整数乘、除法运算初步认识倍数和因数的含义,探索求一个数的倍数和因数的方法,并能找一个数的倍数和因数。
2、过程与方法目标:引导学生自主探究找一个数倍数和因数的方法,体会数学知识之间的内在联系,提高数学思考的水平。
3、情感与态度目标:在学习活动中激发学生学习数学的兴趣和自信心。
4、重点:理解因数和倍数的含义,知道它们呢的关系是相互依存的。
5、难点:探索并掌握求一个数的倍数和因数的方法。
三、教学设计
(一)认识倍数和因数
认识倍数和因数时,利用学生对乘法运算以及长方形的长、宽和面积关系的已有认识,引导学生在操作中得到乘积相同的不同乘法算式,并进一步引出倍数和因数的概念。倍数和因数是指两个数之间的关系,不能单独说某数倍数或因数,这一点学生往往搞不清,为了使学生明白倍数和因数是一种相互依存的关系,我举了生活中的兄弟关系,母女关系的例子帮助学生理解,让学生感受到数学与生活的联系,同时也让学生明白,用数学知识解决生活问题是学习数学的真正目的。
(二)探索求一个数的倍数的方法
从例1中得出:12是3的倍数,又把学生举的一个3的倍数的例子有目的地写在黑板上结合起来看,引导学生说出3的倍数还有哪些。学生在举例子时说出来的数是无序的,这时教师引导学生思考怎样才能按从小到大的顺序有条理地找出3的.倍数,促使学生去关注思想方法,并在学生讨论交流中感受有序的思想方法。
在学生掌握方法的基础上,采用比赛的形式要求学生有序地写出2、5的倍数,然后在整体观察2、3、5倍数的基础上通过学生讨论,一个数倍数的特点。培养了学生观察、比较、归纳概念的能力。
(三)探索求一个数的因数的方法
从例中看出4、3、6、2、12、1都是12的因数,那我们可以怎样找一个数的因数呢?先让学生独自找36的因数,再指名几个学生说说是怎么找的,通过几位学生找的方法的比较得出较合理的方法。接着又找了15、16的因数,归纳出一个数因数的特点。
(四)全课小结
(五)巩固练习
为了提高学生学习兴趣,巩固所学知识,我又补充了两个练习:
1、判断题目的是强化学生对基础知识的掌握。
2、出示几张数字卡片。从中选择只有倍数和因数关系,比谁选择得多。
小学数学四年级下册《倍数和因数》说课稿
一、教材分析。
倍数和因数一课是苏教版数学第八册中的内容。这一内容是在学生已经分阶段认识了百以内、千以内、万以内、亿以内以及一些整亿的数,较为系统地掌握了十进制记数法,同时也基本完成了整数四则运算基础上进行的教学,主要是要使学生初步认识倍数和因数的意义,学会在1-100的自然数中找10以内某个数的所有倍数和100以内某个数的所有因数的方法。这是学生进一步学习公倍数和公因数,以及分数的约分、通分和四则运算的基础,对以后的学习起着重要的作用。
二、教学目标及重点和难点。
1、知识与技能目标:使学生结合整数乘、除法运算初步认识倍数和因数的含义,探索求一个数的倍数和因数的方法,并能找一个数的倍数和因数。
2、过程与方法目标:引导学生自主探究找一个数倍数和因数的方法,体会数学知识之间的内在联系,提高数学思考的水平。
3、情感与态度目标:在学习活动中激发学生学习数学的兴趣和自信心。
4、重点:理解因数和倍数的含义,知道它们呢的关系是相互依存的。
5、难点:探索并掌握求一个数的倍数和因数的方法。
三、教学设计
(一)认识倍数和因数
认识倍数和因数时,利用学生对乘法运算以及长方形的长、宽和面积关系的已有认识,引导学生在操作中得到乘积相同的不同乘法算式,并进一步引出倍数和因数的概念。倍数和因数是指两个数之间的关系,不能单独说某数倍数或因数,这一点学生往往搞不清,为了使学生明白倍数和因数是一种相互依存的关系,我举了生活中的兄弟关系,母女关系的例子帮助学生理解,让学生感受到数学与生活的联系,同时也让学生明白,用数学知识解决生活问题是学习数学的真正目的。
(二)探索求一个数的倍数的方法
从例1中得出:12是3的倍数,又把学生举的.一个3的倍数的例子有目的地写在黑板上结合起来看,引导学生说出3的倍数还有哪些。学生在举例子时说出来的数是无序的,这时教师引导学生思考怎样才能按从小到大的顺序有条理地找出3的倍数,促使学生去关注思想方法,并在学生讨论交流中感受有序的思想方法。
在学生掌握方法的基础上,采用比赛的形式要求学生有序地写出2、5的倍数,然后在整体观察2、3、5倍数的基础上通过学生讨论,一个数倍数的特点。培养了学生观察、比较、归纳概念的能力。
(三)探索求一个数的因数的方法
从例中看出4、3、6、2、12、1都是12的因数,那我们可以怎样找一个数的因数呢?先让学生独自找36的因数,再指名几个学生说说是怎么找的,通过几位学生找的方法的比较得出较合理的方法。接着又找了15、16的因数,归纳出一个数因数的特点。
(四)全课小结
(五)巩固练习
为了提高学生学习兴趣,巩固所学知识,我又补充了两个练习:
1、判断题目的是强化学生对基础知识的掌握。
2、出示几张数字卡片。从中选择只有倍数和因数关系,比谁选择得多。
小学数学倍数和因数五上册说课稿
一、 说教材
(1)教材的地位和前后关系:在学习本单元之前,学生已经认识了百以内、千以内、万以内、亿以内以及一些整亿的数。但这只是对数字的浅在认识,为学生进一步学习公倍数和公因数,以及分数的约分、通分和四则运算奠定基础。
(2)教学目标:
知识、技能目标:
1. 让学生理解倍数和因数的意义,掌握找一个数的倍数和因数的方法,发现一个数的倍数、因数中最大的数、最小的数及其个数方面的特征。
情感、价值目标:
2. 让学生初步意识到可以从一个新的角度来研究非零自然数的特征及其相互关系,培养学生的观察、分析和抽象概括能力,体会教学内容的奇妙、有趣,产生对数学的好奇心。
(3)教学重点:
理解倍数和因数的含义与方法
(4)教学难点:
掌握找一个数的倍数和因数的方法。
二、 谈设计理念
首先从学生的操作入手,由浅入深,利用学生对乘法运算以及长方形的长、宽和面积关系的已有认识,在操作中引出倍数和因数的概念。
其次以学生讨论、交流、相互评价,促成学生对找一个数的倍数、一个数的因数的方法进行优化处理,提升、巩固学生方法表达的完整性、有效性,避免学生只掌握了方法的理解,而不能全面的正确的表达。
三、谈教学过程:
(1)合作交流、揭示主题
用12个大小完全相同的小正方形,进行不同的摆法展示,为了避免简单的操作,引导学生通过算式来想他是怎么摆的。组织交流,引出算式与概念鉴定。
(2)教学概念、正反促成
利用横里读、竖里读,形成了比较系统的知识概念,并及时出示整个前提:是在不含0的自然数,让学生自己举例,示范说、相互说,最后以教师举学生不容易想到了例子:4×4=16,18÷6=3,促成学生不仅从乘法的角度去思考,而且也可以从除法的角度进行,也为后面找一个数的因数的方法做好伏笔。
(3)设疑,置疑,激发学生的反思力度
在教学找一个数的倍数时,“才说到12、18是3的倍数(板书:3的倍数),3的倍数是不是只有12、18这两个数呢?”组织交流:3的倍数有哪些呢?同学互评,交流形成自己的学习成果,提高形成了知识的整体性教学,加大了探索的力度,提高了思维的难度,“分钟内你们写完了吗?如果再给半分钟呢?为什么?”
(4)判断中进行教学内容的递深,形成了反思——学习——强化的.整个学习过程。在学生做出“6是倍数”的正确判断之后,并不简单换章,而是以此为契机
“教学找一个数的因数”以谈话导入,形成知识相互的联系与区别。
“谈话:必须说清谁是谁的倍数,谁是谁的因数。所以6可能是某些数的倍数,也可能是某些数的因数,那我们就来找一个数的因数。你能找出36所有的因数吗?”
(5)讨论互评,自主学习
放手让学生学习找一个数的因数,从无序到有序,从自寻到互学,请学生板书。
学生评价,“提问:你是用什么方法找到一个数的因数,可以介绍给大家吗?还有其他方法吗?”
1×36=36 36÷1=36
2×18=36 36÷2=18
3×12=36 36÷3=12
4×9=363 6÷4=9
6×6=36 36÷6=6
(6)自主不失指导,掌握不失总结
如:提问:5为什么不是36的因数?(因为36÷5不能整除,有余数)
小结:不能被这个数整除的数就不是这个数的因数。
小结:我们即可以从乘法算式,也可以从除法算式找到一个数的因数。
提问:那对于一个数的因数从36的因数、15的因数这两个例子又有什么发现?
总结:对于一个数的倍数和因数,它们是不同的,但通过乘法算式、除法算式又是相互依存的、相互联系的。
四、教学板书(略)
倍数和因数说课稿范文
一、说教材
《倍数和因数》是小学数学国标本第八册第九单元的内容。在学习本单元之前,学生已经分阶段认识了百以内、千以内、万以内、亿以内以及一些整亿的数。较为系统地掌握了十进制计数法,同时也基本完成了整数四则运算的学习。但这只是对数字的浅在认识,为学生进一步学习公倍数和公因数,以及分数的约分、通分和四则运算奠定基础。
本课教学内容为教科书第70—72页的例题及相应的“试一试”。根据这些内容,将教学目标定为以下几点:
(一)知识、技能目标:
1、使学生结合整数乘、除法运算初步认识倍数和因数的含义,探索并掌握找一个数的倍数和因数的方法,发现一个数的倍数、因数中最大的数、最小的数及其个数方面的特征。能在1到100的自然数中找出10以内某个数的所有倍数,能找出100以内某个数的所有因数。
2、使学生在认识倍数和因数以及探索一个数的倍数或者因数的过程中,进一步体会数学知识之间的内在联系,提高数学思考的水平。
(二)情感、价值目标:
让学生初步意识到可以从一个新的角度来研究非零自然数的特征及其相互关系,培养学生的观察、分析和抽象概括能力,体会教学内容的奇妙、有趣,产生对数学的好奇心。
本课的教学重点是理解倍数和因数的含义与方法。
教学难点是掌握找一个数的倍数和因数的方法。
二、学生学习情况分析
本班多数学生在平时的学习中缺少主动性,目的性。一部分学生怕困难,缺乏独立思考的习惯,同时,考虑问题也不够全面。在本堂课的教学中,主要调动学生的学习积极性提高学生课堂活动的参与性,体验成功的乐趣,通过学生的亲自探索和体验来达到学习知识,掌握所学知识的目的。同时,感受数学中的奥妙,增加学习数学的兴趣。
三、教法与学法指导
当今社会、人类的发展离不开素质教育,而实施素质教育必须“以学生为本”,课堂教学要围绕培养学生的探索精神、创新精神出发,为全面提高学生的综合素质打下一定的基础。本节课根据学生的认知能力与心理特征来进行教学策略和方法的设计。
1、遵循学生主体、教师主导(组织),学生操作、探究为主线的理念,首先从学生的操作入手,由浅入深,利用学生对乘法运算以及长方形的长、宽和面积关系的已有认识,在操作中引出倍数和因数的概念。
2、小组合作讨论法。以学生讨论、交流、相互评价,促成学生对找一个数的倍数、一个数的'因数的方法进行优化处理,提升、巩固学生方法表达的完整性、有效性,避免学生只掌握了方法的理解,而不能全面的正确的表达。
3、在教学过程的设计上,根据学生的兴趣,认知规律,自己采取用教材,而不搬教材的教学设计。
四、教学过程:
(一)合作交流,认识倍数和因数
1、动手操作。
出示操作要求:用12个同样大的正方形拼成一个长方形,有几种不同的拼法?观察拼成的长方形,每排摆了几个?摆了几排?用乘法算式把各种摆法表示出来。
2、提问:你表示的乘法算式是怎样的?猜猜他可能是怎么摆的?
根据学生回答,在黑板上板书出乘法算式,电脑演示相应的图形。
板书:12×1=12
6×2=12
4×3=12
(设计意图:从摆小正方形入手,提出“每排摆了几个?”“摆了几排?”这两个问题,引导学生用乘法算式把摆法表示出来,再让学生猜一猜“可能是怎么摆的”。
用12个大小完全相同的小正方形,进行不同的摆法展示,为了避免简单的操作,引导学生通过算式来想他是怎么摆的。组织交流,引出算式与概念鉴定。学生充分经历了“由形到数、再由数到形”的过程,既为倍数和因数概念的提出积累了素材,又初步感知倍数和因数的关系,为正确理解概念提供了帮助。)
3、谈话:用12个同样的小正方形可以摆出三种不同的长方形,写出三道不同的乘法算式。根据一道乘法算式,如4×3=12,我们可以说
“12是4的倍数,12也是3的倍数。
3是12的因数,4也是12的因数。”(边说边在屏幕上显示)
指名像老师一样说一说。
一起横着读一读,再竖着读一读,你读懂了些什么?
师:如果我说
“4是因数,12是倍数,行吗?”
明确:倍数和因数表示的是两个数之间的关系,所以不能单说谁是倍数,谁是因数。
根据6×2=12,你能说出哪个数是哪个数的倍数,哪个数是哪个数的因数吗?根据12×1=12呢?
(设计意图:结合具体的乘法算式介绍倍数和因数时,让学生充分地读一读,使学生初步感受倍数和因数是相互依存的,再通过对反例的辨析,使学生的感受更加深刻。)
4、这就是我们今天要研究的“因数和倍数”。为了研究方便,通常在研究因数和倍数时,所说的数都是指不为零的自然数。
5、练习。
谁也能说一道算式,考考大家谁是谁的倍数,谁是谁的因数?
若学生没有举到除法算式,就由老师举例一道除法算式。“能说谁是谁的倍数,谁是谁的因数吗?”
学生自由发言,统一认识。
小结:除法可以转化成乘法,只要满足两个自然数的乘积等于另外一个自然数,它们之间就存在倍数和因数的关系。
(设计意图:将“想想做做”第1题改为学生自己出题,说说谁是谁的倍数,谁是谁的因数,既达到了巩固的目的,来自学生自身的材料又更加真实,学生更容易接受。同时考虑到学生受思维定势的影响,可能所举例子比较单一,教师就需及时“介入”,发挥引导作用,让学生从内涵上加深对倍数和因数意义的理解。)
二、自主探索,学会找一个数的倍数。
1、谈话:刚才我们认识了倍数和因数,知道了12是3的倍数,3的倍数还有哪些?
让学生思考片刻后自己试着找一找,再小组交流。
全班汇报:(学生可能是无序地找的;也可能是有序地找的。)
在引导学生相互评价的基础上明确:
3与一个数相乘的积就是3的倍数,所以可以用3依次乘1、2、3、4、5……来找3的倍数;也可以每次加3来找3的倍数。
提问:写的完吗?(写不完)那怎么办?(用省略号表示)
2、能总结一下找一个数的倍数的方法吗?
3、能找出2的倍数或5的倍数吗?选择一个找找看。
指名汇报,教师板书:2的倍数有2、4、6、8、10……
5的倍数有3、6、9、12、15……
4、观察上面的例子,你有什么发现?先小组讨论,再交流。
(设计意图:在学生自主探索的基础上,小组合作,全班交流,学生之间积极互动,“捕捉”对方的想法,完善自己的认识,初步掌握找一个数倍数的方法。并通过交流比较,发现“一个数的倍数的个数是无限的,一个数最小的倍数是它本身,没有最大的倍数”。)
三、比较交流,探索找一个数的因数的方法
1、谈话:下面我们研究找一个数的因数。
你能想办法找出36的所有因数吗?有困难的也可以小组里先商量一下。
教师巡视,有目的地将学生中出现的各种情况指名板演。
(可能是用乘法想的,有的找的不全,而有的找的很有序;也可能是利用除法来思考的,同样有可能出现无序和有序。)
2、比较“有序”和“无序”两种情况,引导:对他的方法有没有什么需要补充或提问的?(使学生在比较、交流中感悟有序思考的必要性和科学性。)
3、比较“乘法找”和“除法找”的两种方法,你发现了什么?
(利用学生对乘、除法运算及其相互关系的已有认识,学会灵活的思考,在新旧知识之间建立起合适的联系。)
4、回顾刚才的交流,你觉得要找出一个自然数的所有因数,最大的诀窍是什么?(按一定的顺序一对一对地找,找到两个数接近为止。)
5、能找出15的因数或16的因数吗?选择一个找找看。
交流:15的因数有1、3、5、15。
16的因数有1、2、4、8、16。
6、观察上面三个例子,你发现了什么?
(“从学生的角度看问题是教学取得实效的关键”。本环节对学生可能出现的情况做了充分的预设,并通过两次针对性的比较,使学生学会灵活地、有序地思考,及时引导学生用自己的语言总结找一个数因数的方法。然后通过尝试做题巩固方法。而在观察三个例子发现一个数的因数的特征时,由于有一个数倍数特征的借鉴,所以让学生自由发言总结。)
四、联系生活,巩固应用。
1、做“想想做做”第2题。
让学生自己读题填表。
人教版数学五下《因数与倍数》复习说课稿
一、说教材
1、单元分析
《因数与倍数》这章内容包括:因数和倍数;2,5,3的倍数特征;质数和合数,这些知识是在学生已经掌握了整数知识的基础上,进一步探索整数的性质,属于初等数论的基本内容,教材中首先用乘法算式直接给出了因数和倍数的概念,让学生明确因数与倍数的相互依存关系;再此基础上,让学生根据已有的生活经验探索2,3,5的倍数特征,其中在掌握了2 的倍数的特征基础上,又安排了偶数和奇数的概念;然后进一步探讨因数和倍数的规律中认识质数和合数。本单元的知识内容比较抽象,概念也比较多,教材中恰当地运用了生活实例或具体情境来进行教学,培养学生的探究意识和抽象思维能力。通过这次复习,使学生头脑里形成一个系统的知识网络。
2、教学目标
知识目标:
归纳整理“因数与倍数”的有关概念,理解并掌握概念间内在联系,形成认知结构。
技能目标:
亲历数学知识的整理过程,培养学生的观察、分析、比较、概括、判断等逻辑思维能力。
情感目标:
在整理和复习过程中,培养学生合作、交流的意识,渗透事物间互相联系,互相依存的辨证思想。
3、教学重点
概念间的联系和发展,运用所学知识解决问题。
4、教学难点
归纳和整理知识点,在整理中构建“因数与倍数”的知识网络。
目标应该清晰简明:
(1)形成知识网络
(2)查缺补漏
(3)综合运用知识
(4)解决实际问题
二、说学情分析
1、学生已经掌握了整数的有关知识,有一定的知识作为基础;
2、作为五年级学生,抽象能力已经有了进一步的发展,具备了一定的思维基础,能够在活动中探索发现和总结归纳新知识;
3、对于概念的理解,要引导学生用联系的观点去掌握知识,不能死记硬背,机械地记忆概念和结论。
三、说教法与学法
1、加强对概念之间关系的.梳理,引导学生用联系的观点,从本质上理解和掌握知识,避免死记硬背。
2、教师要恰当利用生活实例或具体情境,充分运用直观手段沟通知识间的联系,使学生能够有条理,有根据地进行思考和分析。
3、根据学生的认知特点,小组合作复习,让学生在交流探索中掌握知识,培养抽象思维能力。
四、说设计理念及教学策略
概念的教学,对学生而言,抽象且枯燥乏味,学生掌握这部分知识难度系数较大,所以课前要作好铺垫,要做好准备,还要精心设计练习题。我在设计中先让学生通过创设情境回顾梳理本单元的概念,以培养学生概括知识的能力,然后加以练习,在练习中明晰概念,深化理解,强调重难点。
五、说设计思路
1、教师教学环节:建立知识网络——巩固解题方法——强调重难点。
2、学生学习环节:分组整理知识点——明确重难点——巩固知识点。
六、说教学过程
环节一:创设情境,激趣导入
让学生用因数与倍数这一章知识,描述一下4和5。(设计意图让学生对本单元这些概念进行回顾)。
环节二:概念梳理,形成结构图
这个环节教师引导学生一起根据这些有关数的概念及它们之间的联系,把这些零散的概念,知识作一次梳理,把它整理成一个比较系统的知识网络图,也就是我的板书设计。(设计意图:一看网络图,使学生脑海里凌乱的知识一下子一目了然,有助于学生理解这些概念,弄清它们之间的关系,并能培养学生梳理知识的能力。)
环节三:综合应用,知识内化
通过填空、判断、破译手机号码等技能训练题,使学生将本单元知识内化,提高综合运用的能力。
环节四:评价完善,课堂总结
(设计意图:关注学生的情感体验,通过自我评价的方式,使学生学会客观,公正地评价自己的学习行为,学习态度,从中收获积极的情感体验。)
《倍数和因数》的说课稿
一、说教材
(1)教材的地位和前后关系:在学习本单元之前,学生已经认识了百以内、千以内、万以内、亿以内以及一些整亿的数。但这只是对数字的浅在认识,为学生进一步学习公倍数和公因数,以及分数的约分、通分和四则运算奠定基础。
(2)教学目标:
知识、技能目标:
1.让学生理解倍数和因数的意义,掌握找一个数的倍数和因数的方法,发现一个数的倍数、因数中最大的数、最小的数及其个数方面的特征。
情感、价值目标:
2.让学生初步意识到可以从一个新的角度来研究非零自然数的特征及其相互关系,培养学生的观察、分析和抽象概括能力,体会教学内容的奇妙、有趣,产生对数学的好奇心。
(3)教学重点:
理解倍数和因数的含义与方法
(4)教学难点:
掌握找一个数的倍数和因数的方法。
二、谈设计理念
首先从学生的操作入手,由浅入深,利用学生对乘法运算以及长方形的长、宽和面积关系的已有认识,在操作中引出倍数和因数的概念。
其次以学生讨论、交流、相互评价,促成学生对找一个数的倍数、一个数的因数的方法进行优化处理,提升、巩固学生方法表达的完整性、有效性,避免学生只掌握了方法的理解,而不能全面的正确的表达。
三、谈教学过程:
(1)合作交流、揭示主题
用12个大小完全相同的小正方形,进行不同的摆法展示,为了避免简单的操作,引导学生通过算式来想他是怎么摆的。组织交流,引出算式与概念鉴定。
(2)教学概念、正反促成
利用横里读、竖里读,形成了比较系统的知识概念,并及时出示整个前提:是在不含0的自然数,让学生自己举例,示范说、相互说,最后以教师举学生不容易想到了例子:4×4=16,18÷6=3,促成学生不仅从乘法的角度去思考,而且也可以从除法的角度进行,也为后面找一个数的因数的方法做好伏笔。
(3)设疑,置疑,激发学生的反思力度
在教学找一个数的倍数时,“才说到12、18是3的倍数(板书:3的倍数),3的倍数是不是只有12、18这两个数呢?”组织交流:3的倍数有哪些呢?同学互评,交流形成自己的学习成果,提高形成了知识的整体性教学,加大了探索的力度,提高了思维的难度,“分钟内你们写完了吗?如果再给半分钟呢?为什么?”
(4)判断中进行教学内容的递深,形成了反思——学习——强化的整个学习过程。在学生做出“6是倍数”的正确判断之后,并不简单换章,而是以此为契机
“教学找一个数的因数”以谈话导入,形成知识相互的'联系与区别。
“谈话:必须说清谁是谁的倍数,谁是谁的因数。所以6可能是某些数的倍数,也可能是某些数的因数,那我们就来找一个数的因数。你能找出36所有的因数吗?”
(5)讨论互评,自主学习
放手让学生学习找一个数的因数,从无序到有序,从自寻到互学,请学生板书。
学生评价,“提问:你是用什么方法找到一个数的因数,可以介绍给大家吗?还有其他方法吗?”
1×36=36 36÷1=36
2×18=36 36÷2=18
3×12=36 36÷3=12
4×9=363 6÷4=9
6×6=36 36÷6=6
(6)自主不失指导,掌握不失总结
如:提问:5为什么不是36的因数?(因为36÷5不能整除,有余数)
小结:不能被这个数整除的数就不是这个数的因数。
小结:我们即可以从乘法算式,也可以从除法算式找到一个数的因数。
提问:那对于一个数的因数从36的因数、15的因数这两个例子又有什么发现?
总结:对于一个数的倍数和因数,它们是不同的,但通过乘法算式、除法算式又是相互依存的、相互联系的。
四、教学板书(略)
小学五年级数学下册《因数和倍数》说课稿范文
作为一位杰出的老师,时常会需要准备好说课稿,借助说课稿可以让教学工作更科学化。那么问题来了,说课稿应该怎么写?以下是小编收集整理的小学五年级数学下册《因数和倍数》说课稿范文,供大家参考借鉴,希望可以帮助到有需要的朋友。
一、说教材
(1)教材的地位和前后关系:在学习本单元之前,学生已经认识了百以内、千以内、万以内、亿以内以及一些整亿的数。但这只是对数字的浅在认识,为学生进一步学习公倍数和公因数,以及分数的约分、通分和四则运算奠定基础。
(2)教学目标:
1、知识、技能目标:
让学生理解倍数和因数的意义,掌握找一个数的倍数和因数的方法,发现一个数的倍数、因数中最大的数、最小的数及其个数方面的特征。
2、情感、价值目标:
让学生初步意识到可以从一个新的角度来研究非零自然数的特征及其相互关系,培养学生的观察、分析和抽象概括能力,体会教学内容的奇妙、有趣,产生对数学的好奇心。
(3)教学重点:
理解倍数和因数的含义与方法。
(4)教学难点:
掌握找一个数的倍数和因数的方法。
二、设计理念
首先从学生的操作入手,由浅入深,利用学生对乘法运算以及长方形的长、宽和面积关系的已有认识,在操作中引出倍数和因数的概念。
其次以学生讨论、交流、相互评价,促成学生对找一个数的倍数、一个数的因数的方法进行优化处理,提升、巩固学生方法表达的完整性、有效性,避免学生只掌握了方法的理解,而不能全面的正确的.表达。
三、教学过程
(1)合作交流、揭示主题。
用12个大小完全相同的小正方形,进行不同的摆法展示,为了避免简单的操作,引导学生通过算式来想他是怎么摆的。组织交流,引出算式与概念鉴定。
(2)教学概念、正反促成。
利用横里读、竖里读,形成了比较系统的知识概念,并及时出示整个前提:是在不含0的自然数,让学生自己举例,示范说、相互说,最后以教师举学生不容易想到了例子:4×4=16,18÷6=3,促成学生不仅从乘法的角度去思考,而且也可以从除法的角度进行,也为后面找一个数的因数的方法做好伏笔。
(3)设疑,置疑,激发学生的反思力度。
在教学找一个数的倍数时,“才说到12、18是3的倍数(板书:3的倍数),3的倍数是不是只有12、18这两个数呢?”组织交流:3的倍数有哪些呢?同学互评,交流形成自己的学习成果,提高形成了知识的整体性教学,加大了探索的力度,提高了思维的难度,“分钟内你们写完了吗?如果再给半分钟呢?为什么?”
(4)判断中进行教学内容的递深,形成了反思——学习——强化的整个学习过程。在学生做出“6是倍数”的正确判断之后,并不简单换章,而是以此为契机。
“教学找一个数的因数”以谈话导入,形成知识相互的联系与区别,“谈话:必须说清谁是谁的倍数,谁是谁的因数。所以6可能是某些数的倍数,也可能是某些数的因数,那我们就来找一个数的因数。你能找出36所有的因数吗?”
(5)讨论互评,自主学习。
放手让学生学习找一个数的因数,从无序到有序,从自寻到互学,请学生板书,学生评价,“提问:你是用什么方法找到一个数的因数,可以介绍给大家吗?还有其他方法吗?”
1×36=36
36÷1=36
2×18=36
36÷2=18
3×12=36
36÷3=12
4×9=363
6÷4=9
6×6=36
36÷6=6
(6)自主不失指导,掌握不失总结。
如:提问:5为什么不是36的因数?(因为36÷5不能整除,有余数)
小结:不能被这个数整除的数就不是这个数的因数。
小结:我们即可以从乘法算式,也可以从除法算式找到一个数的因数。
提问:那对于一个数的因数从36的因数、15的因数这两个例子又有什么发现?
总结:对于一个数的倍数和因数,它们是不同的,但通过乘法算式、除法算式又是相互依存的、相互联系的。
四、教学板书
略。
【微语】年轻时候什么都好,什么都敢评价,一旦经历过了,没有实现狂想就孤独的郁闷,一个劲的喊着活得真烦,生活还在过,又过了几年,又好像明白了,戒备心也重了,也敏感了,一副无所谓的老样子。