教学目标:
(一)知识目标
(1)了解同类项的概念,能识别同类项;
(2)会合并同类项,知道合并同类项所依据的运算律。
(二)能力目标
培养学生的观察、分析、归纳的能力,进一步培养学生的思维能力。
(三)情感、态度、价值观
(1)积极营造亲切和谐的课堂氛围,激励全体学生积极参与数学活动,进一步培养学生团结协助,严谨求实、合作交流、勇于创新的精神。
(2)激发学生探究数学的兴趣,发扬合作学习的精神,培养学生的语言表达能力,并学会与他人合作的能力,在合作中体验成功的喜悦,建立自信心。
教学重点和难点:
重点:同类项的概念、合并同类项的法则及应用。
难点:正确判断同类项;准确合并同类项。
教学过程:
一、 出示问题,引出同类项的概念
1、问题:我们到动物园参观,发现老虎与老虎关在一个笼子里,鹿与鹿关在另一个笼子里。为何不把老虎与鹿关在同一个笼子里呢?
问题:在日常生活中,你发现还有哪些事物也需要分类?能举出例子吗?如:垃圾、零钱、水果及各种产品分类.
2、议一议: 归为同类需要有什么共同的特征?
8n和5n 3ab 和 -2ab 6xy和 -3yx, -7a2b 和 2a2b 5和-3
3、概念:所含字母相同,并且相同字母的指数也相同的项,叫做同类项。
注意:
(1)两同:所含字母相同,相同字母的指数也相同
(2)两无关:同类项与系数无关,与字母的排列顺序也无关
(3)几个常数项也是同类项。
4、课堂检测1:下列各组中的两项是不是同类项?为什么?
(1)ab与3ab (2)6b2a与2ab (3)3xy与- xy
(4)2a与2ab (5)-2.1与 3 (6)5与b
二、如果一个多项式中含有同类项,那么常常把同类项合并起来,使结果得到简化,那么怎样才能把同类项合并起来呢?请同学们思考下面的问题?
问题1:
3ab+ 5ab=_______ 理由是________
-4xy - 2xy=_______ 理由是_______
-3a + 2b= _______ 理由是_______
问题2:
不在一起的同类项能否将同类项结合在一起?为什么?
例如:试化简多项式3xy-2ab–3+ 5xy + 3ba + 5
解:3xy-2ab-3+5xy+3ba+5--------------找出同类项
=3xy+5xy-2ab+3ba-3+5 ----------加法交换律
=(3xy+5xy)+(-2ab+3ba )+(-3+5)--加法结合律
=(3+5)xy+(-2+3)ab+2 ---------乘法分配律逆用
=8xy + ab + 2 ----------合并同类项
合并同类项: 把同类项合并成一项就叫做合并同类项
问题3:探讨合并同类项后,所得项的系数、字母以及字母的指数与合并前各同类项的系数、字母及字母的指数有什么联系?
合并同类项后,所得项的系数等于合并前各同类项的系数之和;合并同类项后,字母以及字母的指数与合并前字母以及字母的指数相同。
合并同类项法则:
同类项的系数相加,所得的结果作为系数,字母和字母的指数不变。(“即一相加,两不变”)
三、例题1:合并下列各式中的同类项:
(1) 2ab - 3ab + ab
(2) a – 4ab + ab + 2ab- 5ab + b
(3) 6a -5b + 2ab + b - 6a
方法是:(1)系数:各项系数相加作为新的系数。
(2)字母以及字母的指数不变。
注意:
(1)用画线的方法标出各多项式中的同类项,减少运算的错误。
(2)移项时要带着原来的符号一起移动。
(3)两组同类项之间用“+”号连接。
(4)多项式中只有同类项才能合并,不是同类项不能合并。
思考:合并同类项的步骤是怎样?
合并同类项一般步骤:
找出同类项 ,交换律 ,结合律,分配律逆用 ,合并
课堂检测2: (1)3x + x
(2) 2x - 7y - 5x + 11y - 1
(3)4a + 3b + 2ab - 4a - 4b
例题2:求代数式-3x2 + 5x - x2 + x + 1- 7x的值,其中x=2。
四、课堂小结:通过这节课的学习,你有哪些收获?
《整式的加减---合并同类项》教学设计
作为一名无私奉献的老师,常常要根据教学需要编写教学设计,借助教学设计可以促进我们快速成长,使教学工作更加科学化。写教学设计需要注意哪些格式呢?下面是小编整理的《整式的加减---合并同类项》教学设计,希望对大家有所帮助。
一、教学目标:
1、使学生理解多项式中同类项的概念,会识别同类项。
2、使学生掌握合并同类项法则,能进行同类项的合并。
3、通过观察、比较交流了解教学的分类思想,并能准确判断出同类项。并熟练运用法则进行合并同类项的运算。
4、激发学生的求知欲,培养独立思考和合作交流的能力,让他们享受成功的喜悦。
二、教学重难点:
重点:同类项的`概念、合并同类项的法则及应用。
难点:正确判断同类项;准确合并同类项。
三、教学方法:引导、探究式教学、合作、交流、观察、练习、
四、教学过程:
(一)情景导入:
1、作为农村学生,我们都知道自己家的菜园里会把西红柿、黄瓜、茄子、葱分别栽培在一起,为何不把它们交叉种植呢?
再如,在小学时,老师会让我们把水果和非水果进行分类,生活中处处有分类问题,在教学中我们也会遇到一种分类问题,今天我们就共同来学习。
根据下列单项式的特征试将其分类:
8n、 -7ab、3ab、2ab、6xy、5n、-3xy、-ab、
2、形成概念:
以上式子归为同类需要有什么共同的特征?(引导学生看书,让学生理解同类项的定义)
概念:所含字母相同,并且相同字母的指数也相同的项,叫做同类项。
注意:(1)同类项与系数无关,与字母的排列顺序也无关
(2)几个常数项也是同类项。
(二)强化练习:
1、思考:下列各组中的两项是不是同类项?为什么?
(1)ab与3ab; (2)2a b与2ab ;(3)3xy与- xy;
(4)2a与2ab (5)-2.1与 ; (6)5与b ;
2、请同学们思考下面的问题?
3ab+5ab=_______理由是________
-4xy2+2xy2=_______ 理由是_______
-3a+2b= 理由是_______
3、不在一起的同类项能否将同类项结合在一起?为什么?
例如:试化简多项式3x y-4xy -3+5x y+2xy +5
解:3x y-4xy -3+5x y+2xy +5--------------找出
(用不同的标志把同类项标出来!)
=3x y+5x y-4xy +2xy -3+5 ----------加法交换律
=(3x y+5x y)+(-4xy +2xy )+(-3+5)--加法结合律
=(3+5)x y+(-4+2)xy +2 ---------乘法分配律逆用
=8 x y-2 xy +2 ----------合并
探讨:
合并同类项后,所得项的系数、字母以及字母的指数与合并前各同类项的系数、字母及字母的指数有什么联系?
(三)例题讲解
例:合并下列各式中的同类项:
1).2a b-3a b+ a b 2).2a b+2ab +a b-ab
3).6a -5b +2ab+b -6a
解:1).2a b-3a b+ a b=(2-3+ )a b=- a b
方法是:(1)系数:各项系数相加作为新的系数。
(2)字母以及字母的指数不变。
2).-2a b+2ab +a b-ab --------------找出
=-2a b+a b+2ab -ab ----------加法交换律
=(-2a b+a b)+(2ab -ab)--加法结合律
=(-2+1)a b +(2-1)ab ---------乘法分配律逆用
= -a b+ ab ----------合并
3).6a -5b +2ab+b -6a
=(6a -6a )+(-5b +b )+2ab-------没有同类项照抄下来
=-4 b +2ab
思考:合并同类项的步骤是怎样?
(四)巩固练习
1、尝试训练:(1)3x +x ; (2)xy - xy ;
(3)4a+3b+2ab-4a-4b
2、请你完成:
(1) 3x-8x-9x (2) 5a2+2ab-4a2-4ab
(3) 2x-7y-5x+11y-1
3、知识延伸:
已知 与 是同类项,求m.n的值。
4.如果2abn+1与-4amb是同类项,则m=____,n=____;
5.若5xy+axy=-2xy,则a=___;
6.在6xy-3x-4xy-5yx+x中没有同类项的项是______
(五)课堂小结:
谈一谈:通过这节课的学习你学到了什么?
相同字母的指数一样
所含字母一样
②交换律
③结合律
④分配律
①找出
A.系数相加减;
B.字母和字母的指数不变。
⑤合并:
合并
法则
要点
(六)布置作业
1、在下列代数式中,指出哪些是同类项。
2x2 ,0 ,-3x ,-x2y ,(x+y)2 ,xy2, x2y ,6x 。
-x2y , 0.5 , -x2 ,2(x+y)2 ;
2、合并同类项
①3y+2y ②3b-3a3+1+a3-2b
③2y+6y+2xy-5 ④6mn+4m2n-3mn+5mn2
3、填空:
(1)在( )内填上相应字母,使得2( )3( )2与5x2y3是同类项;
(2)若x3ym和xny2是同类项,则 = ;
(3)若(n-3)x2yz和x2yz是同类项,则 ;
《合并同类项》教学设计
教学目标:
(一)知识目标
(1)了解同类项的概念,能识别同类项;
(2)会合并同类项,知道合并同类项所依据的运算律。
(二)能力目标
培养学生的观察、分析、归纳的能力,进一步培养学生的思维能力。
(三)情感、态度、价值观
(1)积极营造亲切和谐的课堂氛围,激励全体学生积极参与数学活动,进一步培养学生团结协助,严谨求实、合作交流、勇于创新的精神。
(2)激发学生探究数学的兴趣,发扬合作学习的精神,培养学生的语言表达能力,并学会与他人合作的能力,在合作中体验成功的喜悦,建立自信心。
教学重点和难点:
重点:同类项的'概念、合并同类项的法则及应用。
难点:正确判断同类项;准确合并同类项。
教学过程:
一、 出示问题,引出同类项的概念
1、问题:我们到动物园参观,发现老虎与老虎关在一个笼子里,鹿与鹿关在另一个笼子里。为何不把老虎与鹿关在同一个笼子里呢?
问题:在日常生活中,你发现还有哪些事物也需要分类?能举出例子吗?如:垃圾、零钱、水果及各种产品分类.
2、议一议: 归为同类需要有什么共同的特征?
8n和5n 3ab 和 -2ab 6xy和 -3yx, -7a2b 和 2a2b 5和-3
3、概念:所含字母相同,并且相同字母的指数也相同的项,叫做同类项。
注意:
(1)两同:所含字母相同,相同字母的指数也相同
(2)两无关:同类项与系数无关,与字母的排列顺序也无关
(3)几个常数项也是同类项。
4、课堂检测1:下列各组中的两项是不是同类项?为什么?
(1)ab与3ab (2)6b2a与2ab (3)3xy与- xy
(4)2a与2ab (5)-2.1与 3 (6)5与b
二、如果一个多项式中含有同类项,那么常常把同类项合并起来,使结果得到简化,那么怎样才能把同类项合并起来呢?请同学们思考下面的问题?
问题1:
3ab+ 5ab=_______ 理由是________
-4xy - 2xy=_______ 理由是_______
-3a + 2b= _______ 理由是_______
问题2:
不在一起的同类项能否将同类项结合在一起?为什么?
例如:试化简多项式3xy-2ab–3+ 5xy + 3ba + 5
解:3xy-2ab-3+5xy+3ba+5--------------找出同类项
=3xy+5xy-2ab+3ba-3+5 ----------加法交换律
=(3xy+5xy)+(-2ab+3ba )+(-3+5)--加法结合律
=(3+5)xy+(-2+3)ab+2 ---------乘法分配律逆用
=8xy + ab + 2 ----------合并同类项
合并同类项: 把同类项合并成一项就叫做合并同类项
问题3:探讨合并同类项后,所得项的系数、字母以及字母的指数与合并前各同类项的系数、字母及字母的指数有什么联系?
合并同类项后,所得项的系数等于合并前各同类项的系数之和;合并同类项后,字母以及字母的指数与合并前字母以及字母的指数相同。
合并同类项法则:
同类项的系数相加,所得的结果作为系数,字母和字母的指数不变。(“即一相加,两不变”)
三、例题1:合并下列各式中的同类项:
(1) 2ab - 3ab + ab
(2) a – 4ab + ab + 2ab- 5ab + b
(3) 6a -5b + 2ab + b - 6a
方法是:(1)系数:各项系数相加作为新的系数。
(2)字母以及字母的指数不变。
注意:
(1)用画线的方法标出各多项式中的同类项,减少运算的错误。
(2)移项时要带着原来的符号一起移动。
(3)两组同类项之间用“+”号连接。
(4)多项式中只有同类项才能合并,不是同类项不能合并。
思考:合并同类项的步骤是怎样?
合并同类项一般步骤:
找出同类项 ,交换律 ,结合律,分配律逆用 ,合并
课堂检测2: (1)3x + x
(2) 2x - 7y - 5x + 11y - 1
(3)4a + 3b + 2ab - 4a - 4b
例题2:求代数式-3x2 + 5x - x2 + x + 1- 7x的值,其中x=2。
四、课堂小结:通过这节课的学习,你有哪些收获?
【微语】最后,请相信,每一份付出都不会被辜负,只要心中有梦,脚下就有力量。