一、知识与技能
1.从现实情境和已有的知识、经验出发、讨论两个变量之间的相依关系,加深对函数、函数概念的理解.
2.经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念.
二、过程与方法
1.经历对两个变量之间相依关系的讨论,培养学生的辨别唯物主义观点.
2.经历抽象反比例函数概念的过程,发展学生的抽象思维能力,提高数学化意识.
三、情感态度与价值观
1.经历抽象反比例函数概念的过程,体会数学学习的重要性,提高学生的学习数学的兴趣.
2.通过分组讨论,培养学生合作交流意识和探索精神.
教学重点:
理解和领会反比例函数的概念.
教学难点:
领悟反比例的概念.
教学过程:
一、创设情境,导入新课
活动1
问题:下列问题中,变量间的对应关系可用怎样的函数关系式表示?这些函数有什么共同特点?
(1)京沪线铁路全程为1463km,乘坐某次列车所用时间t(单位:h)随该列车平均速度v(单位:km/h)的变化而变化;
(2)某住宅小区要种植一个面积为1000m2的矩形草坪,草坪的长为y随宽x的变化;
(3)已知北京市的总面积为1.68×104平方千米,人均占有土地面积S(单位:平方千米/人)随全市人口n(单位:人)的变化而变化.
师生行为:
先让学生进行小组合作交流,再进行全班性的问答或交流.学生用自己的语言说明两个变量间的关系为什么可以看着函数,了解所讨论的函数的表达形式.
教师组织学生讨论,提问学生,师生互动.
在此活动中老师应重点关注学生:
①能否积极主动地合作交流.
②能否用语言说明两个变量间的关系.
③能否了解所讨论的函数表达形式,形成反比例函数概念的具体形象.
分析及解答:(1);(2);(3)
其中v是自变量,t是v的函数;x是自变量,y是x的函数;n是自变量,s是n的函数;
上面的函数关系式,都具有的形式,其中k是常数.
二、联系生活,丰富联想
活动2
下列问题中,变量间的对应关系可用这样的函数式表示?
(1)一个游泳池的容积为20xxm3,注满游泳池所用的时间随注水速度u的变化而变化;
(2)某立方体的体积为1000cm3,立方体的高h随底面积S的变化而变化;
(3)一个物体重100牛顿,物体对地面的压力p随物体与地面的接触面积S的变化而变化.
师生行为
学生先独立思考,在进行全班交流.
教师操作课件,提出问题,关注学生思考的过程,在此活动中,教师应重点关注学生:
(1)能否从现实情境中抽象出两个变量的函数关系;
(2)能否积极主动地参与小组活动;
(3)能否比较深刻地领会函数、反比例函数的概念.
分析及解答:(1);(2);(3)
概念:如果两个变量x,y之间的关系可以表示成的形式,那么y是x的反比例函数,反比例函数的自变量x不能为零.
活动3
做一做:
一个矩形的面积为20cm2, 相邻的两条边长为xcm和ycm.那么变量y是变量x的函数吗?是反比例函数吗?为什么?
师生行为:
学生先进行独立思考,再进行全班交流.教师提出问题,关注学生思考.此活动中教师应重点关注:
①生能否理解反比例函数的意义,理解反比例函数的概念;
②学生能否顺利抽象反比例函数的模型;
③学生能否积极主动地合作、交流;
活动4
问题1:下列哪个等式中的y是x的反比例函数?
问题2:已知y是x的反比例函数,当x=2时,y=6
(1)写出y与x的函数关系式:
(2)求当x=4时,y的值.
师生行为:
学生独立思考,然后小组合作交流.教师巡视,查看学生完成的情况,并给予及时引导.在此活动中教师应重点关注:
①学生能否领会反比例函数的意义,理解反比例函数的概念;
②学生能否积极主动地参与小组活动.
分析及解答:
1.只有xy=123是反比例函数.
2.分析:因为y是x的反比例函数,所以,再把x=2和y=6代入上式就可求出常数k的值.
解:(1)设,因为x=2时,y=6,所以有解得k=12
三、巩固提高
活动5
1.已知y是x的反比例函数,并且当x=3时,y= ?8.
(1)写出y与x之间的函数关系式.
(2)求y=2时x的值.
2.y是x的反比例函数,下表给出了x与y的一些值:
(1)写出这个反比例函数的表达式;
(2)根据函数表达式完成上表.
学生独立练习,而后再与同桌交流,上讲台演示,教师要重点关注“学困生”.
四、课时小结
反比例函数概念形成的过程中,大家充分利用已有的生活经验和背景知识,注意挖掘问题中变量的相依关系及变化规律,逐步加深理解.在概念的形成过程中,从感性认识到理发认识一旦建立概念,即已摆脱其原型成为数学对象.反比例函数具有丰富的数学含义,通过举例、说理、讨论等活动,感知数学眼光,审视某些实际现象.
一、教材分析
反比例函数是初中阶段所要学习的三种函数中的一种,是一类比较简单但很重要的函数,现实生活中充满了反比例函数的例子。因此反比例函数的概念与意义的教学是基础。
二、学情分析
由于之前学习过函数,学生对函数概念已经有了一定的认识能力,另外在前一章我们学习过分式的知识,因此为本节课的教学奠定的一定的基础。
三、教学目标
知识目标:理解反比例函数意义;能够根据已知条件确定反比例函数的表达式.
解决问题:能从实际问题中抽象出反比例函数并确定其表达式. 情感态度:让学生经历从实际问题中抽象出反比例函数模型的过程,体会反比例函数来源于实际.
四、教学重难点
重点:理解反比例函数意义,确定反比例函数的表达式.
难点:反比例函数表达式的确立.
五、教学过程
(1)京沪线铁路全程为1463km,某次列车的平均速度v(单位:km/h)随此次列车的全程运行时间t(单位:h)的变化而变化;
(2)某住宅小区要种植一个面积1000m2的矩形草坪,草坪的长y(单
位:m)随宽x(单位:m)的变化而变化。
请同学们写出上述函数的表达式
14631000(2)y= tx
k可知:形如y= (k为常数,k≠0)的函数称为反比例函数,其中xx(1)v=
是自变量,y是函数。
此过程的目的在于让学生从实际问题中抽象出反比例函数模型的过程,体会反比例函数来源于实际. 由于是分式,当x=0时,分式无意义,所以x≠0。
当y= 中k=0时,y=0,函数y是一个常数,通常我们把这样的函数称为常函数。此时y就不是反比例函数了。
举例:下列属于反比例函数的是
(1)y= (2)xy=10 (3)y=k-1x (4)y= -
此过程的目的是通过分析与练习让学生更加了解反比例函数的概念 问已知y与x成反比例,y与x-1成反比例,y+1与x成反比例,y+1与x-1成反比例,将如何设其解析式(函数关系式)
已知y与x成反比例,则可设y与x的函数关系式为y=
k x?1
k已知y+1与x成反比例,则可设y与x的函数关系式为y+1= xkxkxkxkx2x已知y与x-1成反比例,则可设y与x的函数关系式为y=
已知y+1与x-1成反比例,则可设y与x的函数关系式为y+1= k x?1此过程的目的是为了让学生更深刻的了解反比例函数的概念,为以后在求函数解析式做好铺垫。
例:已知y与x2反比例,并且当x=3时y=4
(1)求出y和x之间的函数解析式
(2)求当x=1.5时y的值
解析:因为y与x2反比例,所以设y?k,只要将k求出即可得到yx2
和x之间的函数解析式。之后引导学生书写过程。能从实际问题中抽象出反比例函数并确定其表达式最后学生练习并布置作业
通过此环节,加深对本节课所内容的认识,以达到巩固的目的。
六、评价与反思
本节课是在学生现有的认识基础上进行讲解,便于学生理解反比例函数的概念。而本节课的重点在于理解反比例函数意义,确定反比例函数的表达式.应该对这一方面的内容多练习巩固。
一、教学设计思路
1、本节课讲述内容为北师大版教材九年级下册第五章《反比例函数》的第二节,也这一章的重点。本节课是在理解反比例函数的意义和概念的基础上,进一步熟悉其图象和性质的过程。
2、对教材的分析
(1)教学目标:进一步熟悉作函数图象的主要步骤,会作反比例函数的图象;体会函数三种方式的相互转换,对函数进行认识上的整和;逐步提高从函数图象中获取知识的能力,探索并掌握反比例函数的主要性质。
(2)重点:会作反比例函数的图象;探索并掌握反比例函数的主要性质。
(3)难点:探索并掌握反比例函数的主要性质。
二、教学过程
(一)作图象,试比较
1、提问:
(1)=4/x是什么函数?你会作反比例函数的图象吗?
(2)作图的步骤是怎样的
(3)填写电脑上的表格,开始在坐标纸上描点连线。
2、按照上述方法作=—4/x的图象
3、对照你所作的两个函数图象,找一下它们的相同点和不同点。
(二)细观察,找规律
1、让学生观察函数=/x的图象,按下动画按钮,在运动中观察值的变化与函数图象变化之间的关系,并与同学充分讨论有何规律。
2、演示反比例函数中心对称的性质以及轴对称性质,显示反比例函数的两条对称轴。
3、让学生观察函数=/x的图象,观察过反比例函数上任意一点作x轴和轴的垂线,观察其围成矩形的面积变化情况。
(1)拖动,使变化,观察不断变化过程中,矩形面积的变化情况,讨论得出结论。
(2)拖动函数上的点,观察矩形面积的变化情况,讨论得出结论。
(三)用规律,练一练
1、给出两个反比例函数的图象,判断哪一个是=2/x和=—2/x的图象。
2、判断一位同学画的反比例函数的图象是否正确。
3、下列函数中,其图象位于第一、三象限的有哪几个?在其图象所在象限内,的值随x的增大而增大的有哪几个?
(四)想一想,作小结
(五)作业:
课本137页第1题、141页第2题
教学内容:教材14~16页例4、例5、例6,24页做一做,练习三4、5、6、7题。
素质教育目标
(一)知识教学点
1.理解反比例的意义。
2.能根据反比例的意义,正确判断两种量是否成反比例。
(二)能力训练点
1.培养学生的抽象概括能力。
2.培养学生的判断推理能力。
(三)德育渗透点
通过反比例意义的教学,使学生受到辩证唯物主义观点的启蒙教育。
教具学具准备:投影仪、投影片。
教学重点:引导学生总结概括出成反比例的量,是相关联的两种量中相对应的两个数的积一定,进而抽象、概括出成反比例关系式:X×Y=K(一定)
教学难点:利用反比例的意义,正确判断两种量是否成反比例。
教学步骤
一、铺垫孕伏
1.下表中的两种量是不是成正比例?为什么?
2.回忆:成正比例的量有什么特征?
二、探究新知
1.引入新课。我们已经学习了常见数量关系中成正比例关系的量的特征。这节课我们继续研究常见的数量关系中的另外一种特征——成反比例的量。(板书:成反比例的量)
2.教学例4
(1)出示例4,提出观察思考要求:(投影出示)
从表中你发现了什么?这个表同复习的表相比,有什么不同?
(2)学生讨论交流。
(3)引导学生回答:
①表中的两种量是每小时加工的数量和所需的加工时间。
(板书:每小时加工数加工时间)
②每小时加工的数量扩大,所需的加工时间反而缩小;每小时加工的数量缩小,所需的加工时间反而扩大。
③每两个相对应的数的乘积都是600)。
教师适时点拨:
①想一想:每小时加工的数量和所需的加工时间是两种相关联的量吗?为什么?
(引导学生回答:是两种相关联的量,每小时加工的数量变化,加工时间也随着变化。同时板书。)
②议一议:这两种量的变化有什么规律吗?
(教师可以操作:一个竹筒内放30根筷子,每次拿3根,10次拿完;每次拿5根,6次拿完;每次拿6根,5次拿完;每次拿10根,3次拿完。想想:什么变了?什么没变?有什么规律吗?)
(订正时,随学生回答,板书:积一定)
③教师问:这个600实际上就是什么?(板书:零件总数(一定))
师指板书问:每小时加工数、加工时间和零件总数,怎样用式子表示它们之间的关系?(板书:×=)
(4)小结:通过刚才的研究,我们知道,每小时加工数和加工时间是两种相关联的量,每小时加工数变化,加工时间也随着变化,每小时加工数乘以加工时间等于零件总数,这里的零件总数是一定的。
3.教学例5
(1)投影出示例5,根据题意,学生口述填表。
(2)观察上表,你发现了什么?引导学生回答下列问题:
①表中有哪两种量?(板书:每本页数装订本数)是相关联的量吗?
②装订的本数是怎样随着每本的页数变化的?
③表中的两种量有什么变化规律?
(3)订正时板书:在原板书“每小时加工数变化,加工时间也随着变化”的“每小时加工数”下板书“每本页数”,在“加工时间”下板书“装订本数”。
(4)教师问:这个积600实际上是什么?(板书:纸的总页数(一定))指板书问:每本页数、装订本数和纸的总页数之间有什么关系?(板书:×=)
4.比较例4和例5,概括反比例的意义
(1)请你比较例4和例5,它们有什么相同点?(学生互相议论一下)
(2)学生回答:
①都有两种相关联的量。
②都是一种量变化,另一种量也随着变化。
(板书:用“一种量”盖住“每小时加工数”和“每本页数”;用“另一种量”盖住“加工时间”和“装订本数”。)
③都是两种量中相对应的两个数的积一定。
(3)师小结:像这样的两种量,我们就把它们叫做成反比例的量,它们的关系叫做反比例关系。
(4)通过观察比较,谁能说说什么样的两种量叫做成反比例的量?
(找2~3名学生说,教师随时把板书补充完整)
5.教师引导学生明确:在例4中,所需的加工时间随着每小时加工数量的变化而变化,并且,每小时加工的数量和所需的加工时间的积,也就是零件总数是一定的。我们就说每小时加工的数量和所需的加工时间是成反比例的量。
议一议:在例5中,有哪两种相关联的量?它们是不是成反比例的量?为什么?
6.教师:如果用字母x和y表示两种相关联的量,用k表示它们的积一定,(随时板书:xyk(一定))反比例关系可以用一个什么样的式子表示?(板书:×=)
7.教学例6
(1)出示例6
(2)学生交流。
(3)学生汇报,教师点拨。
①每天播种的公顷数和要用的天数是不是相关联的量?
②每天播种的公顷数和要用的天数有什么关系?它们的积是什么?这个积一定吗?(板书:每天播种的公顷数×天数=播种的总公顷数(一定))
③播种总公顷数一定,每天播种公顷数和要用的天数成反比例吗?为什么?(板书:每天播种的公顷数和要用的天数成反比例。随着问为什么,板书:因为,所以)
想一想,播种的总公顷数一定,已经播种的公顷数和剩下的公顷数是不是成反比例?为什么?(组织学生讨论)
8.完成做一做
三、巩固发展
1.想一想:成反比例的量应具备什么条件?
2.练习三第4题
3.判断下面每题中的两个量是不是成反比例,并说明理由。
(1)路程一定,速度和时间。
(2)小明从家到学校,每分走的速度和所需时间。
(3)平行四边形面积一定,底和高。
(4)小林做10道数学题,已做的题和没有做的题。
(5)小明拿一些钱买铅笔,单价和购买的数量。
4.你能举一个反比例的例子吗?
四、全课小结
这节课我们学习了成反比例的量,知道了什么样的两种量是成反比例的量,也学会了怎样判断两种量是不是成反比例。在判断时,同学们要按照反比例的意义,认真分析,做出正确的判断。
五、布置作业练习三5题、6题。
一、知识与技能
1.从现实情境和已有的知识、经验出发、讨论两个变量之间的相依关系,加深对函数、函数概念的理解.
2.经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念.
二、过程与方法
1.经历对两个变量之间相依关系的讨论,培养学生的'辨别唯物主义观点.
2.经历抽象反比例函数概念的过程,发展学生的抽象思维能力,提高数学化意识.
三、情感态度与价值观
1.经历抽象反比例函数概念的过程,体会数学学习的重要性,提高学生的学习数学的兴趣.
2.通过分组讨论,培养学生合作交流意识和探索精神.
教学重点:
理解和领会反比例函数的概念.
教学难点:
领悟反比例的概念.
教学过程:
一、创设情境,导入新课
活动1
问题:下列问题中,变量间的对应关系可用怎样的函数关系式表示?这些函数有什么共同特点?
(1)京沪线铁路全程为1463km,乘坐某次列车所用时间t(单位:h)随该列车平均速度v(单位:km/h)的变化而变化;
(2)某住宅小区要种植一个面积为1000m2的矩形草坪,草坪的长为y随宽x的变化;
(3)已知北京市的总面积为1.68×104平方千米,人均占有土地面积S(单位:平方千米/人)随全市人口n(单位:人)的变化而变化.
师生行为:
先让学生进行小组合作交流,再进行全班性的问答或交流.学生用自己的语言说明两个变量间的关系为什么可以看着函数,了解所讨论的函数的表达形式.
教师组织学生讨论,提问学生,师生互动.
在此活动中老师应重点关注学生:
①能否积极主动地合作交流.
②能否用语言说明两个变量间的关系.
③能否了解所讨论的函数表达形式,形成反比例函数概念的具体形象.
分析及解答:(1);(2);(3)
其中v是自变量,t是v的函数;x是自变量,y是x的函数;n是自变量,s是n的函数;
上面的函数关系式,都具有的形式,其中k是常数.
二、联系生活,丰富联想
活动2
下列问题中,变量间的对应关系可用这样的函数式表示?
(1)一个游泳池的容积为2000m3,注满游泳池所用的时间随注水速度u的变化而变化;
(2)某立方体的体积为1000cm3,立方体的高h随底面积S的变化而变化;
(3)一个物体重100牛顿,物体对地面的压力p随物体与地面的接触面积S的变化而变化.
师生行为
学生先独立思考,在进行全班交流.
教师操作课件,提出问题,关注学生思考的过程,在此活动中,教师应重点关注学生:
(1)能否从现实情境中抽象出两个变量的函数关系;
(2)能否积极主动地参与小组活动;
(3)能否比较深刻地领会函数、反比例函数的概念.
分析及解答:(1);(2);(3)
概念:如果两个变量x,y之间的关系可以表示成的形式,那么y是x的反比例函数,反比例函数的自变量x不能为零.
活动3
做一做:
一个矩形的面积为20cm2, 相邻的两条边长为xcm和ycm.那么变量y是变量x的函数吗?是反比例函数吗?为什么?
师生行为:
学生先进行独立思考,再进行全班交流.教师提出问题,关注学生思考.此活动中教师应重点关注:
①生能否理解反比例函数的意义,理解反比例函数的概念;
②学生能否顺利抽象反比例函数的模型;
③学生能否积极主动地合作、交流;
活动4
问题1:下列哪个等式中的y是x的反比例函数?
问题2:已知y是x的反比例函数,当x=2时,y=6
(1)写出y与x的函数关系式:
(2)求当x=4时,y的值.
师生行为:
学生独立思考,然后小组合作交流.教师巡视,查看学生完成的情况,并给予及时引导.在此活动中教师应重点关注:
①学生能否领会反比例函数的意义,理解反比例函数的概念;
②学生能否积极主动地参与小组活动.
分析及解答:
1.只有xy=123是反比例函数.
2.分析:因为y是x的反比例函数,所以,再把x=2和y=6代入上式就可求出常数k的值.
解:(1)设,因为x=2时,y=6,所以有解得k=12
三、巩固提高
活动5
1.已知y是x的反比例函数,并且当x=3时,y= ?8.
(1)写出y与x之间的函数关系式.
(2)求y=2时x的值.
2.y是x的反比例函数,下表给出了x与y的一些值:
(1)写出这个反比例函数的表达式;
(2)根据函数表达式完成上表.
学生独立练习,而后再与同桌交流,上讲台演示,教师要重点关注“学困生”.
四、课时小结
反比例函数概念形成的过程中,大家充分利用已有的生活经验和背景知识,注意挖掘问题中变量的相依关系及变化规律,逐步加深理解.在概念的形成过程中,从感性认识到理发认识一旦建立概念,即已摆脱其原型成为数学对象.反比例函数具有丰富的数学含义,通过举例、说理、讨论等活动,感知数学眼光,审视某些实际现象.
【教学内容】
反比例。(教材第47页例2)。
【教学目标】
1.使学生理解反比例的意义,能正确地判断两种相关联的量是不是成反比例的量。
2.让学生经历反比例意义的探究过程,体验观察比较、推理、归纳的学习方法。
【重点难点】
引导学生总结出成反比例的量的特点,进而抽象概括出反比例的关系式。利用反比例的意义,正确判断两个量是否成反比例。
【教学准备】
投影仪。
【复习导入】
1.让学生说说什么是正比例,然后用投影出示下面的题。
下面各题中哪两种量成正比例?为什么?
(1)每公顷产量一定,总产量和公顷数。
(2)一袋大米的重量一定,吃了的和剩下的。
(3)修房屋时,粉刷的面积和所需涂料的数量。
2.说出每小时加工零件数、加工零件总数和加工时间三者之间的关系。在什么条件下,其中两种量成正比例?
教师:如果加工零件总数一定,每小时加工数和加工时间会成什么变化?关系怎样?这就是我们这节课要学习的内容。
【新课讲授】
1.教学例2。
创设情境。
教师:把相同体积的水倒入底面积不同的杯子,高度会怎样变化?
出示教材第47页例2的情境图和表格。
请学生认真观察表中数据的变化情况,组织学生分小组讨论:
(1)水的高度和底面积变化有关系吗?
(2)水的高度是怎样随着底面积变化的?
(3)水的高度和底面积的变化有什么规律?
学生不难发现:底面积越大,水的高度越低;底面积越小,水的高度越高,而且高度和底面积的乘积(水的体积)一定。
教师板书配合说明这一规律:
30×10=20×15=15×20=……=300
教师根据学生的汇报说明:高度和底面积有这样的变化关系,我们就说高度和底面积成反比例的关系,高度和底面积叫做成反比例的量。
2.归纳反比例的意义。
组织学生小组内讨论:反比例的意义是什么?
学生小组内交流,指名汇报。
教师总结:像这样,两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。
3.用字母表示。
如果用字母x和y表示两种相关联的量,用k表示它们的乘积(一定),反比例关系的式子怎么表示?
学生探讨后得出结果。
x×y=k(一定)
4.师:生活中还有哪些成反比例的量?
在教师的引导下,学生举例说明。如:
(1)大米的质量一定,每袋质量和袋数成反比例。
(2)教室地板面积一定,每块地砖的面积和块数成反比例。
(3)长方形的面积一定,长和宽成反比例。
5.组织学生将例1与例2进行比较,小组内讨论:
正比例与反比例的相同点和不同点有哪些?
学生交流、汇报后,引导学生归纳:
相同点:都表示两种相关联的量,且一种量变化,另一种量也随着变化。
不同点:正比例关系中比值一定,反比例关系中乘积一定。
6.你还有什么疑问
如果学生提出表示反比例关系的图像有什么特征,教师应该引导学生观察教材第48页“你知道吗?”中的图像。
反比例关系也可以用图像来表示,表示两个量的点不在同一条直线上,点所连接起来的图像是一条曲线,图像特征不要求掌握。
【课堂作业】
1.教材第48页的“做一做”。
2.教材第51页第9、10题。
答案:1.(1)每天运的吨数和所需的天数两种量,它们是相关联的量。
(2)300×1=150×2=100×3=300(答案不唯一),积都是300。积表示货物的总量。
(3)成反比例,因为每天运的吨数变化,需要的天数也随着变化,且它们的积一定。
2.第9题:成反比例,因为每瓶的容量与瓶数的乘积一定。
第10题:50 100 12
【课堂小结】
说一说成反比例关系的量的变化特征。
【课后作业】
1.完成练习册中本课时的练习。
2.教材51~52页第8、14题。
答案:
2.第8题:成反比例,因为教室的面积一定,而每块地砖的面积与所需数量的乘积都等于教室的面积54m2。
第14题:
(1)斑马和长颈鹿的奔跑路程和奔跑时间成正比例。
(2)分析:可以通过图像直接估计,先在横轴上找到18分的位置,然后在两个图像中找到相应的点,再分别在竖轴上找到与这个点对应的数值;也可以通过计算找到。
解答:从图像中可以知道斑马10min跑12km,那么1min跑1.2km,18min跑1.2×18=21.6(km)。
从图像中可以知道长颈鹿5min跑4km,1min跑0.8km,18min跑0.8×18=14.4(km)。
(3)斑马跑得快。
第3课时 反比例
两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。
用x和y表示两种相关联的量,x和y成反比例关系用字母表示为:x×y=k(一定)
正比例与反比例的相同点和不同点:
相同点:都表示两种相关联的量,且一种量变化,另一种量也随着变化。
不同点:正比例关系中比值一定,反比例关系中乘积一定。
教学内容:
苏教版义务教育课程标准实验教科书第94页《正比例和反比例》“练习与实践”的第1-6题。
教材学情分析:
本节课是《正比例和反比例》复习的第二教时,教材重点引导学生交流判断两种量是否成比例、成什么比例的思考方法,并要求学生找出一些生活中成正比例或反比例量的例子,帮助学生进一步认识成正比例和反比例的量,感受正比例和反比例是描述数量关系及其变化规律的又一种有效的数学模型。
“练习与实践”第7题让学生根据提供的两组数据判断相应的两种量分别成什么比例,有利于学生巩固对成正比例和反比例量的认识,掌握判断两种量是否成比例以及成什么比例的基本思考方法;“练习与实践”第8题让学生结合生活经验以及相关数量关系的理解,继续练习成正比例和反比例量的判断方法;“练习与实践”第9题的第一题让学生根据表示一辆汽车在高速公路上行驶的千米数和耗油量关系的图象,先判断这两种量是否成正比例,再根据其中一个量的数值估计另一个量的数值。第二题要求学生根据一辆汽车在市区行驶的千米数和耗油量关系的数据,在方格纸上画出表示它们关系的图象。通过上述活动,一方面可以使学生加深对正比例关系的认识,另一方面可以使进一步体会数学结合在解决问题方面的价值;“练习与实践”第10题是一个与比例尺有关的实际问题。教材先让学生量出一幅平面图上相关的图上距离,再让学生利用给出的比例尺求出相应的实际距离。教材这样的安排,主要让学生进一步体会比和比例知识的应用价值,感受不同领域的数学内容有着密切联系的。
教学目标:
⑴使学生进一步认识成正比例和反比例的量,感受表示数量关系及其变化规律的不同数学模型;能运用比和比例的知识解决一些简单实际问题,丰富解决问题策略,积累解决问题的经验。
⑵让学生进一步体会比和比例知识的应用价值,感受不同领域的数学内容有着密切联系的。
⑶使学生在系统复习的过程中,体验与同学合作交流以及获取知识的乐趣,增进对数学学习的积极情感,增强学好数学的信心。
教学重点:
进一步认识成正比例和反比例的量。
教学难点:
感受比的应用价值,在活动中获得一些新的认识。
教学具准备:
教学流程:
一、教师谈话,揭示课题。
⑴教师谈话。
教师谈话:上一节课我们复习了“比和比例”的有关知识,本节课我们继续复习这方面的知识。板书:正比例和反比例。
⑵揭示课题。
揭示课题——正比例和反比例。
二、师生互动,合作交流。
⑴完成“练习与实践”第7题。
呈现“练习与实践”第7题,明确要交流的主题:表中的两种量分别成什么比例?为什么?
班级交流判断的方法:一是利用表中的数据进行判断,在次体会正比例和反比例量在变化中的不同规律。成正比例关系的两种量同时扩大或缩小,它们扩大或缩小的倍数是相同的;成反比例的两种量,一个量扩大,另一种量反而缩小,它们扩大或缩小的倍数也是相同的;二是利用数量关系式判断,表格一:因为钢材质量:钢材体积=比重(一定),所以钢材质量和钢材体积成正比例;表格二:圆柱底面积×圆柱高=圆柱的体积(一定),所以圆柱底面积和圆柱高成反比例;利用图象判断,用描点的方法画出图象,如果是直线,则成正比例。
⑵完成“练习与实践”第8题。
呈现完成“练习与实践”第8题,明确要思考的内容:先写出数量关系式,再判断是否成比例?成什么比例?为什么?独立写出数量关系式,同桌交流。
第一问:因为每块砖的面积×砖的块数=一间教室的面积(一定),所以每块砖的面积和砖的块数成反比例;
第二问:因为圆的周长÷半径=2π,所以圆的周长和半径成正比例。
⑶完成“练习与实践”第9题。
呈现完成“练习与实践”第9题,明确要交流的内容:判断行驶的路程和耗油量是否成正比例;根据图象用一种数据判断另一种数据是多少。
班级交流理解、完成题目的情况,进行“根据图象用一种数据判断另一种数据是多少”的练习;反馈学生形成的正比例图象的情况;比较汽车高速公路和市区耗油量的不同情况,体会比例知识在日常生活中的应用价值。
⑷完成“练习与实践”第10题。
呈现完成“练习与实践”第10题,理解题目的意思,分别量出学校到各个地方的图上距离,形成以下板书:
图上距离实际距离
学校-少年宫4厘米?米
学校-体育场3.5厘米?米
学校-市民广场2.5厘米?米
学校-火车站7厘米?米
多种角度理解比例尺的意思:图上距离1厘米表示实际距离600米;图上距离1厘米表示实际距离60000厘米;……
解答:在多种书写形式的基础上,体会用“图上距离1厘米表示实际距离600米”的优越性。沟通和正比例之间的联系。
⑸谈谈本节课的收获。
教学目标:
1、能利用反比例函数的相关的知识分析和解决一些简单的实际问题
2、能根据实际问题中的条件确定反比例函数的解析式。
3、在解决实际问题的过程中,进一步体会和认识反比例函数是刻画现实世界中数量关系的一种数学模型。
教学重点、难点:
重点:能利用反比例函数的相关的知识分析和解决一些简单的实际问题
难点:根据实际问题中的条件确定反比例函数的解析式
教学过程:
一、情景创设:
为了预防“非典”,某学校对教室采用药熏消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量(g)与时间x(in)成正比例.药物燃烧后,与x成反比例(如图所示),现测得药物8in燃毕,此时室内空气中每立方米的含药量为6g,请根据题中所提供的信息,解答下列问题:
(1)药物燃烧时,关于x的函数关系式为:________,自变量x的取值范围是:_______,药物燃烧后关于x的函数关系式为_______.
(2)研究表明,当空气中每立方米的含药量低于1.6g时学生方可进教室,那么从消毒开始,至少需要经过______分钟后,学生才能回到教室;
(3)研究表明,当空气中每立方米的含药量不低于3g且持续时间不低于10in时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?
二、新授:
例1、小明将一篇24000字的社会调查报告录入电脑,打印成文。
(1)如果小明以每分种120字的速度录入,他需要多少时间才能完成录入任务?
(2)录入文字的速度v(字/in)与完成录入的时间t(in)有怎样的函数关系?
(3)小明希望能在3h内完成录入任务,那么他每分钟至少应录入多少个字?
例2某自来水公司计划新建一个容积为的长方形蓄水池。
(1)蓄水池的底部S与其深度有怎样的函数关系?
(2)如果蓄水池的深度设计为5,那么蓄水池的底面积应为多少平方米?
(3)由于绿化以及辅助用地的需要,经过实地测量,蓄水池的长与宽最多只能设计为100和60,那么蓄水池的深度至少达到多少才能满足要求?(保留两位小数)
三、课堂练习
1、一定质量的氧气,它的密度(g/3)是它的体积V(3)的反比例函数,当V=103时,=1.43g/3.(1)求与V的函数关系式;(2)求当V=23时求氧气的密度.
2、某地上年度电价为0.8元&nt;/&nt;度,年用电量为1亿度.本年度计划将电价调至0.55元至0.75元之间.经测算,若电价调至x元,则本年度新增用电量(亿度)与(x-0.4)(元)成反比例,当x=0.65时,=-0.8.
(1)求与x之间的函数关系式;
(2)若每度电的成本价为0.3元,则电价调至多少元时,本年度电力部门的收益将比上年度增加20%?[收益=(实际电价-成本价)×(用电量)]
3、如图,矩形ABCD中,AB=6,AD=8,点P在BC边上移动(不与点B、C重合),设PA=x,点D到PA的距离DE=.求与x之间的函数关系式及自变量x的取值范围.
四、小结
五、作业
30.3——1、2、3
【教学内容】
反比例。(教材第47页例2)。
【教学目标】
1.使学生理解反比例的意义,能正确地判断两种相关联的量是不是成反比例的量。
2.让学生经历反比例意义的探究过程,体验观察比较、推理、归纳的学习方法。
【重点难点】
引导学生总结出成反比例的量的特点,进而抽象概括出反比例的关系式。利用反比例的意义,正确判断两个量是否成反比例。
【教学准备】
投影仪。
【复习导入】
1.让学生说说什么是正比例,然后用投影出示下面的题。
下面各题中哪两种量成正比例?为什么?
(1)每公顷产量一定,总产量和公顷数。
(2)一袋大米的重量一定,吃了的和剩下的。
(3)修房屋时,粉刷的面积和所需涂料的数量。
2.说出每小时加工零件数、加工零件总数和加工时间三者之间的关系。在什么条件下,其中两种量成正比例?
教师:如果加工零件总数一定,每小时加工数和加工时间会成什么变化?关系怎样?这就是我们这节课要学习的内容。
【新课讲授】
1.教学例2。
创设情境。
教师:把相同体积的水倒入底面积不同的杯子,高度会怎样变化?
出示教材第47页例2的情境图和表格。
请学生认真观察表中数据的变化情况,组织学生分小组讨论:
(1)水的高度和底面积变化有关系吗?
(2)水的高度是怎样随着底面积变化的?
(3)水的高度和底面积的变化有什么规律?
学生不难发现:底面积越大,水的高度越低;底面积越小,水的高度越高,而且高度和底面积的乘积(水的体积)一定。
教师板书配合说明这一规律:
30×10=20×15=15×20=……=300
教师根据学生的汇报说明:高度和底面积有这样的变化关系,我们就说高度和底面积成反比例的关系,高度和底面积叫做成反比例的量。
2.归纳反比例的意义。
组织学生小组内讨论:反比例的意义是什么?
学生小组内交流,指名汇报。
教师总结:像这样,两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。
3.用字母表示。
如果用字母x和y表示两种相关联的量,用k表示它们的乘积(一定),反比例关系的式子怎么表示?
学生探讨后得出结果。
x×y=k(一定)
4.师:生活中还有哪些成反比例的量?
在教师的引导下,学生举例说明。如:
(1)大米的质量一定,每袋质量和袋数成反比例。
(2)教室地板面积一定,每块地砖的面积和块数成反比例。
(3)长方形的面积一定,长和宽成反比例。
5.组织学生将例1与例2进行比较,小组内讨论:
正比例与反比例的相同点和不同点有哪些?
学生交流、汇报后,引导学生归纳:
相同点:都表示两种相关联的量,且一种量变化,另一种量也随着变化。
不同点:正比例关系中比值一定,反比例关系中乘积一定。
6.你还有什么疑问
如果学生提出表示反比例关系的图像有什么特征,教师应该引导学生观察教材第48页“你知道吗?”中的`图像。
反比例关系也可以用图像来表示,表示两个量的点不在同一条直线上,点所连接起来的图像是一条曲线,图像特征不要求掌握。
【课堂作业】
1.教材第48页的“做一做”。
2.教材第51页第9、10题。
答案:1.(1)每天运的吨数和所需的天数两种量,它们是相关联的量。
(2)300×1=150×2=100×3=300(答案不唯一),积都是300。积表示货物的总量。
(3)成反比例,因为每天运的吨数变化,需要的天数也随着变化,且它们的积一定。
2.第9题:成反比例,因为每瓶的容量与瓶数的乘积一定。
第10题:5010012
【课堂小结】
说一说成反比例关系的量的变化特征。
反比例函数的图象与性质教案教学设计
反比例函数的图象与性质
教学目标
知识与技能:1.进一步熟悉作函数图象的主要步骤,会作反比例函数的图象。
2.体会函数的三种表示方法的相互转换,对函数进行认识上的整合。
3.培养学生从函数图象中获取信息的能力,初步探索反比例函数的性质。
过程与方法:通过学生自己动手列表,描点,连线,提高学生的作图能力;通过观察图象,概括反比例函数图象的有关性质,训练学生的概括总结能力.
情感、态度与价值观:让学生积极参与到数学学习活动中去,增强他们对数学学习的好奇心和求知欲。
教学重点
教学难点 1) 重点:画反比例函数图象并认识图象的特点.
2)难点:画反比例函数图象.
教学关键 教师画图中要规范,为学生树立一个可以学习的模板
教学方法 激发诱导,探索交流,讲练结合三位一体的教学方式
教学手段 教师画图,学生模仿
教具 三角板,小黑板
学法 学生动手,动眼,动耳,采用自主,合作,探究的学习方法
教学过程
(包含课前检测、新课导入、新课讲解、课堂练习、小结、形成性检测、反馈拓展、作业布置)
内 容 设计意图
一:课前检测:
1.什么叫做反比例函数;
(一般地,如果两个变量x、y之间的关系可以表示成y= (k为常数,k0)的形式,那么称y是x的反比例函数。)
2.反比例函数的定义中需要注意什么?
(1)k为常数,k0
(2)从y= 中可知x作为分母,所以x不能为零.
二:激发兴趣 导入新课
问题1:对于一次函数 y = kx + b ( k 0 )的图象与性质,我们是如何研究的?
y=kx+b y=kx
K0 一、二、三 一、三
b0 一、三、四
K0 一、二、四 二、四
b0 二、三、四
问题2:对于反比例函数 y=k/x ( k是常数,k 0 ),我们能否象一次函数那样进行研究呢?
可以
问题3:画图象的步骤有哪些呢?
(1)列表
(2)描点
(3)连线
(教学片断:
师:上一节课我们研究了反比例函数,今天我们继续研究反比例函数,下面哪位同学说一下自己对反比例函数的了解。
生:我知道反比例函数来源于生活,生活中的许多问题都属于反比例函数问题,例如,在匀速运动中当路程一定时,且路程不等于零,则速度与时间成反比例函数关系。
生:我知道反比例函数的解析式为 且k不等于0
生:我知道反比例函数的图象是曲线。
师:同学们说的都很好,关于反比例函数,相信大家还会知道一些,今天我们先讨论到这里.现在大家思考一个问题,我们在研究一次函数时研究完解析式后,研究的是函数图象,那么对于反比例函数我们接下来该研究什么呢?
生:该研究反比例函数图象和性质了。
师:现在给大家几分钟的时间探讨一下反比例函数图象该怎么画?
三:探求新知
学生思考、交流、回答。
提问:你能画出 的图象吗?
学生动手画图,相互观摩。
(1) 列表(取值的特殊与有效性)
x -8 -4 -2 -1 -1/2 1/2 1 2 4 8
(2)描点(描点的准确)
(3)连线(注意光滑曲线)
议一议
(1)你认为作反比例函数图象时应注意哪些问题?与同伴进行交流。
(2)如果在列表时所选取的数值不同,那么图象的形状是否相同?
(3)连接时能否连成折线?为什么必须用光滑的曲线连接各点?
(4)曲线的发展趋势如何?
曲线无限接近坐标轴但不与坐标轴相交
学生先分四人小组进行讨论,而后小组汇报
做一做
作反比例函数 的图象。
学生动手画图,相互观摩。
想一想
观察 和 的图象,它们有什么相同点和不同点?
学生小组讨论,弄清上述两个图象的异同点
相同点:(1)图象分别都是由两支曲线组成(2)都不与坐标轴相交(3)都是轴对称图形(y=x、y=-x)和中心对称图形(对称中心(0,0)即坐标原点)
不同点:第一个图象位于一、三象限;第二个图象位于二、四象限
四:归纳与概括
反比例函数 y = 有下列性质:反比例函数的图象y = 是由两支曲线组成的。
(1) 当 k0 时,两支曲线分别位于第___、___象限。
(2) 当 k0 时,两支曲线分别位于第___、___象限.
五:课堂练习
(1)
(2)反比例函数 的图象是________,过点( ,____),其图象分布在_ __象限;
六:形成性检测
(1)已知函数 的图象分布在第二、四象限内,则 的取值范围是_________
(2)若ab0,则函数 与 在同一坐标系内的图象大致可能是下图中的 ( )
(A) (B) (C) (D)
(3)画 和 的图象
七:反馈拓展
在同一坐标系中作出函数y=2/x与函数y=x-1的图象,并利用图象求它们的交点坐标.
八:作业布置
(1) 作反比例函数y=2/x,y=4/x,y=6/x的图象
(2) 习题5.2.1
(3)预习下一节 反比例函数的图象与性质II
复习上节主要内容
(3分钟)
(5分钟)
运用类比研究一次函数性质的方法,来研究反比例函数图象与性质
由于初中学生属于义务教育阶段,没有经过入学选拔,所以两极分化比较严重,上面提出的问题带有一定的开放性,面向各层次的学生,使不同层次的学生都有一定的问题可答,从而激发起不同层次学生的学习积极性。
数学教学重要目的之一是使学生学会学习,利用这个问题可以使学生学会寻找研究的方向,会提出研究的课题,提高学习的能力。
数学学习活动是学生对自己头脑中已有知识的重新建构,所以利用学生头脑中已有的一次函数图象与性质,及研究一次函数图象与性质的方法,创设问题情境,可以激发学习研究的热情,点燃学生思维的火花,并使学生知道如何研究新问题,使学生在探究过程中实现知识的迁移,形成新的认知结构。
(12分钟)
引导学生正确画出反比例函数图象,并能归纳反比例函数图象的.有关性质.
在画第一个图象时,教师要在黑板上用三角板一步一步的示范,在重要地方再重点强调,直到整个图象的完成。只有以身示范,同学学习才有样可依,有了正确标准的样板,学生学习也变得容易。这样可以培养学生严谨与严密的做题步骤以及做题的规范性。
注:(1)x取绝对值相等符号相反的数值
(2) x取值要尽可能多,而且有代表性
(3)连线时用光滑曲线从小到大依次连接
(4)图象不与坐标轴相交
在此学生若是回答图象是轴对称图象或者中心对称图象都要予以肯定,这些内容留给学生课下探讨,并鼓励提出问题的学生继续探索不要放弃。
(3分钟)
此时图象由学生仿照第一个在下边自己独立画出,并且监督学生,在有学生画的不对的地方及时指出,并使其改正后鼓励。最后在黑板上画出正确的图象,使学生自己画的图象与黑板对比。
(5分钟)
活动效果及注意事项 学生初次作非线性函数的图象,在作图过程中应给学生留有思考和交流的时间;连线必须是光滑的曲线
(4分钟)
培养学生归纳,语言表达能力
此中注意分类讨论思想的应用
巩固反比例函数图象性质
(2分钟)
与新课较接近的简化检测可以再次回顾所学内容,以及内容重点。这类题多为口算或口答,题目简单不过所学内容可以全部体现。
(5分钟)
这类练习要求动笔计算或者画图,有一定难度,可以深化所学内容。
(4分钟)
此题既是对函数图象画法的复习又是对方程求解的深化。其中蕴含了数形结合思想。
(1分钟)
巩固作反比例函数图象的步骤,预习下一节课内容
教学反思与检讨:
本节课通过学生自主探索,合作交流,自主画图,以认知规律为主线,以发展能力为目标,以从直观感受到分析归纳为手段,培养学生的合情推理能力和积极的情感态度,促进良好的数学观的形成。培养了学生的抽象思维能力,同时也向学生渗透了归纳类比,数形结合以及分类讨论的数学思想方法。
由于此节课是动手画图,限于器材以及教学设备,图象显示不能用几何画板和投影仪,不过一笔一笔的教学生一个范例,既可给学生思考也可有学习的空间。
在由图象获取性质的时候有一些不足,以后教课时要注意引导,使学生较快获得有效信息,从而归纳出要得到的性质和结论。在这节课要多强调光滑曲线以及画法。
反比例函数的图象与性质
一:画出 的图象
(1)列表(取值的特殊与有效性)
x -8 -4 -2 -1 -1/2 1/2 1 2 4 8
(2)描点(描点的准确)
(3)连线(注意光滑曲线)
注:(1)x取绝对值相等符号相反的数值
(2)x取值要尽可能多,而且有代表性 三:练习
(3)连线时用光滑曲线从小到大依次连接
(4)图象不与坐标轴相交
二:反比例函数的图象y = 是由两支曲线组成的。
(1) 当 k0 时,两支曲线分别位于第一、三象限。
(2) 当 k0 时,两支曲线分别位于第二、四象限.
反比例的意义教学设计
教学目标
1.使学生理解反比例的意义,掌握成反比例的变化规律,并能初步运用。
2.能正确判断成正反比例的量,为解答正反比例应用题打下基础。
教学重点和难点
理解反比例的意义,掌握两种相关联的量变化规律。
教学过程设计
(一)复习准备
1.(出示幻灯)
一种练习本的数量和总页数如下表:
师:请回答下列问题。
(1)表中哪个量是固定不变的量?
(2)哪两种量是相关联的量?它们的变化规律是怎样的?
(3)表内相关联的两种量成正比例吗?为什么?
2.填空。(小黑板(一))
两种相关联的量,一种量变化另一种量也随着变化,如果这两种量中________,这两种量叫做成________的量,它们的关系叫做________关系。
3.判断下面各题中两种量是否成正比例。
(1)文具盒的单价一定,买文具盒的个数和总价( )。
(2)水稻产量一定,水稻的种植面积和总产量( )。
(3)一堆货物一定,运出的和剩下的( )。
(4)汽车行驶的速度一定,行驶的时间和路程( )。
(5)比值一定,比的前项和后项( )。
可选其中一、二题,说一说为什么?
师:通过刚才的复习,我们对正比例的意义理解得很好。你们想一想,有正比例就一定有反比例。什么时候成反比例呢?今天我们就学习反比例的意义。(板书课题:反比例的意义)
(二)学习新课
1.出示例4。(小黑板(二))
例4 华丰机械厂加工一批零件,每小时加工的数量和加工的时间如下表:
(1)分析表,回答下列问题。(幻灯出示)
①表中有哪种量?
②两种相关联的量是如何变化的?
③你能说出它们的关系式吗?
④相对应的每两个数的乘积各是多少?
⑤哪种量是固定不变的?
师:请同学们打开书自学,然后分组讨论以上问题。(老师巡视、指导。)
(2)同学们发言。
根据同学发言,用彩色粉笔画出箭头并加以说明:
①每小时加工的数量扩大,加工的时间反而缩小;当每小时加工的数量缩小,加工的时间反而扩大。它们变化的规律是:一扩一缩或一缩一扩,变化的倍数相同。(板书)
②两种量中相对应的两个数的积都是600。
(板书) 10×60=600 30×20=600 50×12=600
③从数量关系看:
(3)我们来总结一下反比例的意义是什么?
(4)上述小结让学生照板书内容自述。
2.出示例5。
例5 用600页纸装订同样的练习本,每本的页数和装订的本数有什么关系呢?请先填表后,再回答下列问题。
观察上表,回答下面的问题:
①表中有哪两种量?
②装订的本数怎样随着每本的页数变化?
③它们变化的规律是怎样的?
④题目中的600是哪种量?
⑤根据两种相关联的量,你能列出一个怎样的关系式?可以求出什么?
生:(答略)
师:我们通过这一例题再次总结一下反比例的意义。
看小黑板(一)中第二条空线,总结反比例的意义。
师:对照反比例的意义详说例5成什么比例。
生:装订的本数是随着每本页数的变化而变化的。每本的页数扩大,装订的本数反而缩小;每本的页数缩小,装订的本数反而扩大。每本的页数和装订的本数的.积总是一定的。如:
15×40=600 20×30=600 25×24=600
所以说每本的页数和装订的本数是成反比例的关系。
师:刚才你们对照例题总结得很好,它们的共同点是什么呢?
幻灯出示:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。
(学生看幻灯,读一读。)
师:谁能对照反比例的意义说一说例4是成什么比例?
(学生看黑板叙述,老师在关系式上标出定量和它们的关系。)
生:加工的时间随着每小时加工数量的变化而变化,每小时加工的数量和加工的时间的积(零件总数)是一定的,我们就说每小时加工的数量和加工的时间是成反比例的量,它们的关系是反比例的关系。
3.学习字母公式。
师:如果用字母x和y表示两种相关联的量,用k表示它们的积(一定),你能概括出成反比例的字母公式吗?
生:x×y=k(一定)。
师:很好。我们今天学习了反比例的意义。和正比例相比较,它们的相同点和不同点你能总结一下吗?(两人互相讨论)
教师指复习小黑板(一)(即填空),学生回答。
生:相同点是都有两种相关联的量,都有一个定量。不同点是,成正比例的量,两种相关联的量同扩同缩,而且相对应的两个数的商(比值)一定;成反比例的量,两种相关联的量一扩一缩,相对应的两个数的积是一定的。
师:大家总结得很好,要判断两种相关联的量成什么比例的量,就要抓住相对应的个数是商一定,还是积一定。这是判断两种量是成正比例还是成反比例的关键。
(三)巩固反馈
1.打开书看今天讲的内容,并划出重点。
2.看课本中的“做一做”,逐一回答书中的问题。
3.书中练习题4,用语言详叙判断成什么比例?为什么?
4.你能举出一个成反比例的例子吗?(自由发言)
5.练习判断两种量是否成反比例。
(1)煤的总量一定,每天的烧煤量和烧的天数( )。
(2)李叔叔从家到工厂,骑车的速度和所需要的时间( )。
(3)玉华做12道练习题,做完的与没做的题( )。
(4)长方形面积一定,它的长和宽( )。
(四)课堂总结
本节我们初步了解了反比例的意义,并能运用反比例的意义判断一些简单的问题。通过正、反比例意义的对比,使我们进一步认识到,要判断两种相关联的量是成正比例关系还是成反比例的关系,要抓住两种相关联的量的变化规律,这是本质。今后我们还要继续研究。
(五)布置作业
练习题中第4,5题。
课堂教学设计说明
本节课是通过知识引进、知识讨论、知识运用总结进行的。
首先通过复习,巩固了正比例的意义。通过旧知识引出新知识“反比例的意义”,过渡自然,知识做到了连贯性。
在引导学生学习正比例学习的基础上,启发学生主动、自觉地去观察、分析、概括、发现规律,从而既学到了新知识,又增长了自学能力。
幻灯演示、小组讨论、集体反馈,选用多样的教学手段,使枯燥的知识活起来,充分调动学生的积极性,激发学生的兴趣。
通过知识的对比,加强了知识的内在联系,并通过区别不同的概念,巩固了知识。学生的全面参与,培养了总结、区别、沟通的能力。练习的多样、及时,使学生加深概念的理解。
板书设计
反比例的意义教学设计和反思
教学目标:
1.通过探究活动,理解反比例的意义,并能正确判断成反比例的量。
2.引导学生揭示知识间的联系,培养学生分析判断、推理能力
教学流程:
一、复习铺垫,猜想引入
师:(1)表格里有哪两个相关联的量?(2)这两个相关联的量成正比例关系吗?为什么?
2.猜想
师:今天我们要学习一种新的比例关系反比例关系。(板书:反比例)
师:从字面上看反比例与正比例会是怎样的关系?
生:相反的。
师:既然是相反的,你能联系正比例关系猜想一下,在反比例关系中,一个量会怎样随着另一个量的变化而变化?它们的变化会有怎样的规律?
生:(略)
反思:根据学生认知新事物大多由猜而起的规律,从概念的名称正、反两宇为切入点,引导学生顾名思义,对反比例的意义展开合理的猜想,激起学生研究问题的愿望。
二、提供材料,组织研究
1.探究反比例的意义
师:大家的猜想是否合理,还需要进一步证明。下面我提供给大家几张表格,以小组为单位研究以下几个问题。
(1)表中有哪两个相关联的量?
(2)两个相关联的量,一个量是怎样随着另一个量的变化而变化的?变化规律是什么?
2.小组讨论、交流。(教师巡回查看,并做适当指导。)
3.汇报研究结果
(在汇报交流时,学生们纷纷发表自己的看法。当分析到表3时,大家开始争论起来。)
生1:剩下的路程随着已行路程的扩大而缩小,但积不一定。
生2:已行路程十剩下路程=总路程(一定)。
您现在正在阅读的人教版《反比例的意义》教学设计及反思文章内容由收集!本站将为您提供更多的精品教学资源!人教版《反比例的意义》教学设计及反思生3:我认为第一个同学的说法不准确,应该换成增加和减小
(最后通过对比大家达成共识:只有表2和表3的变化规律有共性。)
师:表2和表3中两个量的变化规律有哪些共性?(生答略。)
师:这两个相关联的量叫做成反比例的'量,它们的关系叫做反比例关系。(完成板书。)
师:如果用字母A和B表示两个相关联的量,用C表示它们的积,你认为反比例关系可以用哪个关系式表示?[板书]
反思:教材中两个例题是典型的反比例关系,但问题过瘦过小,思路过于狭窄,虽然学生易懂,但容易造成知其然,而不知其所以然。通过增加表3,更利于学生发现长宽=长方形的面积(一定)这一关系式,有助于学生探究规律。同时还增加了表1、表4,把正比例关系、反比例关系、与反比例雷同(和一定)的情况混合在一起,给学生提供了甄别问题的机会。
4.做一做(略)
5.学习例6
师:刚才我们是参照表格中的具体数据来研究两个量是不是成反比例关系,如果这两个量直接用语言文字来描述,你还会判断它们成不成反比例关系吗?(投影出示例题。)
三、巩固练习,拓展应用
1.基本练习。(略)
2.拓展应用。
师:你能举一个反比例的例子吗?(先自己举例,写在本子上,再集体交流。)
交流时,学生们争先恐后,列举了许多反比例的例子。课正在顺利进行时,一个同学举的正方形的边长边长=面积(一定),边长和边长成反比例的例子引起了学生们的争论。教师没有马上做判断,而是问学生:能说出你的理由吗?有的学生说:因为乘积一定,所以边长和边长成反比例关系。对他的意见有的同学点头称是,而有的同学却摇头忽然,一名同学像发现新大陆一样大声叫起来:不对!边长不随着边长的扩大而缩小!这是一种量!一句话使大家恍然大悟:对啊!边长是一种量,它们不是相关联的两个量,所以边长和边长不成反比例。后来又有一名同学举例:边长4=正方形的周长(一定),边长和4成反比例。话音刚落,学生们就齐喊起来:不对!边长和4不是相关联的两个量。
反思:通过你能举一个反比例的例子吗?这样一个开放性练习题,让学生联系已有的知识,使新旧知识有机结合,帮助学生建立起良好的认知结构,这同时也是对数量关系一次很好的整理复习机会,通过举例进一步明确如何判断两个量是否成反比例。
3.综合练习
四、总结
反思:
《数学课程标准》中指出:学生的数学学习内容应当是现实的、有意义的、富有挑战性的,这些内容要有利于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动。而现行的小学数学高年级教材,内容偏窄、偏深,部分知识抽象严密、逻辑性强、脱离学生的生活实际,与新教材相比明显滞后。如何将新的课改理念与旧教材有机整合,是我们每一个数学教师应该思考探索的课题。
反比例函数及其图像教学设计
目标 1、使学生理解反比例函数的概念;
2、使学生能根据问题中的条件确定反比例函数的解析式;
3、能结合图象理解反比例函数的性质。
4、培养学生 用 数形结合的思想与方法解决数学问题。
重点 反比例函数的图象的画法及性质
难点 1、 选取适当的点画反比例函数的图象;
2、 结合反比例函数图象说出它们的性质。
教学过程
一、复习引入
1、什么叫一次函数?什么叫正比例函数?写出它们的一般式。它们有何关系?
2、正比例函数的图象与性质:
正比例函数 反比例函数
解析式 y=kx(k0) y=k/x或 (k0)
图象 经过(0,0)与(1,k)两点的直线 双曲线
当k0时,图象经过一、三象限;当k0时,图象经过二、四象限; 当k0时,图象经过一、三象限;当k 0时,图象经过二、四象限;
性质 当k0时,Y随着X的增大而增大;当k0时,Y随着X的增大而减小; 当k0时,Y随着X的增大而减小;当 k0时,Y随着X的增大而增大;
3、 学学 过反比例关系下面我们举几个例子
例1 矩形的面积是12cm2,写出矩形的一边y(cm)和另一边x(cm)之间的用函数关系式.
例2 两个变量x和y的乘积等于-6,写出y与x之间的函数关系式.
4、提出问题:
上面两个问题从关系式看,它们是不是正比例函数?为什么?
答:不是,因为不符合正比例函数y=kx的形式,它们的关系是反比例关系.
二、讲解新课
1、 反比例函数的定义
一般地, (k为常数,k0)叫做反比例函数,即y是x的反比例函数,也可以写成
例3、 知函数y=(m2+m-2)xm -2m-9是反比例函数,求m的值。
例4、 已知变量y与 x成反比例,当x=3时, y=―6;那么当y=3时,x的值是 ;
例5、 已知点A(―2,a)在函数 的图像上,则a= ;
2、反比例函数的图象
例6、画出反比例函数 与 的图象(师生分别画图)
步骤:(1)列表(强调x不能取0,为保证其图的对称性,x要取适当的值)
(2)描点(准确性要高)
(3)连线(用一条平滑曲线根据自变量由小到大的顺序把这些点连结起来)
归纳:
(1)反比例函数的图象由两条曲线组成 ,叫做双曲线。
(2)讨论反比例函数图象的画法:
① 反比例函数的`图象不是直线,两点法是不能画的,它的图象是双曲线,图象关于原点成中心对称.列表时自 变量的值可以选取绝对值相等而符号相反的数(如1,2等等)相应地就得到绝对值相等而符号相反的对应的函数值. 这样即可以简化计算的手续,又便于在坐标平面内找到点.
② 反比例函数的图象的两支都无限地接近但永远不能达到x轴和y轴,所以图象与x轴y轴没有交点.如果发现画的图象无限接近坐标轴后,又偏离坐标轴,这也是错误的,教师可在课堂上演示,并说明错误的原因.
③ 选取的点越多画的图越准确;
④ 画图注意其美观性(对称性、延伸特征)
3、反比例函数的性质
再让学生观察黑板上的图,提问:
(1)当 时,双曲线的两个分支各在哪个象限?在每个象限内,y随x的增 大怎样变化?(2)当 时,双曲线的两个分支各在哪个象限?在每个象限内,y随x的增大怎样变化?这两个问题由学生讨论总结之后回答。
教师板书:
(1)当k0时,函数图象的两个分支分别分布在第一、三象限内,在每一个象限中,y随x的增大而减小;当k0时,两个分支分别分布在第二、四象限内,在每一个象限中,y随x的增大而增大.
(2)两 个分支都无限接近但永远不能达到x轴和y轴.4、反比例函数的这一性质与正比例函数的性质有何异同?
例6、已知函数 在每一象限内,y随x的减小而减小,那么k的取值范围是
例7、在同一坐标系中,函数 和y=kx+3的图像大 致是( )
A B C D
4、 课堂练习:第129页1~3
5、课堂小结
反比例函数的教学设计
知识技能目标
1.理解反比例函数的图象是双曲线,利用描点法画出反比例函数的图象,说出它的性质;
2.利用反比例函数的图象解决有关问题.
过程性目标
1.经历对反比例函数图象的观察、分析、讨论、概括过程,会说出它的性质;
2.探索反比例函数的图象的性质,体会用数形结合思想解数学问题.
教学过程
一、创设情境
上节的练习中,我们画出了问题1中函数的图象,发现它并不是直线.那么它是怎么样的曲线呢?本节课,我们就来讨论一般的反比例函数(k是常数,k≠0)的图象,探究它有什么性质.
二、探究归纳
1.画出函数的图象.
分析画出函数图象一般分为列表、描点、连线三个步骤,在反比例函数中自变量x≠0.
解1.列表:这个函数中自变量x的取值范围是不等于零的一切实数,列出x与y的对应值:
2.描点:用表里各组对应值作为点的坐标,在直角坐标系中描出在京各点点(-6,-1)、(-3,-2)、(-2,-3)等.
3.连线:用平滑的曲线将第一象限各点依次连起来,得到图象的第一个分支;用平滑的曲线将第三象限各点依次连起来,得到图象的另一个分支.这两个分支合起来,就是反比例函数的图象.
上述图象,通常称为双曲线(hyperbola).
提问这两条曲线会与x轴、y轴相交吗?为什么?
学生试一试:画出反比例函数的图象(学生动手画反比函数图象,进一步掌握画函数图象的步骤).
学生讨论、交流以下问题,并将讨论、交流的结果回答问题.
1.这个函数的图象在哪两个象限?和函数的图象有什么不同?
2.反比例函数(k≠0)的图象在哪两个象限内?由什么确定?
3.联系一次函数的性质,你能否总结出反比例函数中随着自变量x的增加,函数y将怎样变化?有什么规律?
反比例函数有下列性质:
(1)当k>0时,函数的图象在第一、三象限,在每个象限内,曲线从左向右下降,也就是在每个象限内y随x的增加而减少;
(2)当k<0时,函数的图象在第二、四象限,在每个象限内,曲线从左向右上升,也就是在每个象限内y随x的增加而增加.
注1.双曲线的两个分支与x轴和y轴没有交点;
2.双曲线的两个分支关于原点成中心对称.
以上两点性质在上堂课的问题1和问题2中反映了怎样的实际意义?
在问题1中反映了汽车比自行车的速度快,小华乘汽车比骑自行车到镇上的时间少.
在问题2中反映了在面积一定的情况下,饲养场的一边越长,另一边越小.
三、实践应用
例1若反比例函数的图象在第二、四象限,求m的值.
分析由反比例函数的定义可知:,又由于图象在二、四象限,所以m+1<0,由这两个条件可解出m的值.
解由题意,得解得.
例2已知反比例函数(k≠0),当x>0时,y随x的增大而增大,求一次函数y=kx-k的图象经过的象限.
分析由于反比例函数(k≠0),当x>0时,y随x的增大而增大,因此k<0,而一次函数y=kx-k中,k<0,可知,图象过二、四象限,又-k>0,所以直线与y轴的交点在x轴的上方.
解因为反比例函数(k≠0),当x>0时,y随x的增大而增大,所以k<0,所以一次函数y=kx-k的图象经过一、二、四象限.
例3已知反比例函数的图象过点(1,-2).
(1)求这个函数的解析式,并画出图象;
(2)若点A(-5,m)在图象上,则点A关于两坐标轴和原点的对称点是否还在图象上?
分析(1)反比例函数的图象过点(1,-2),即当x=1时,y=-2.由待定系数法可求出反比例函数解析式;再根据解析式,通过列表、描点、连线可画出反比例函数的图象;
(2)由点A在反比例函数的图象上,易求出m的值,再验证点A关于两坐标轴和原点的对称点是否在图象上.
解(1)设:反比例函数的解析式为:(k≠0).
而反比例函数的图象过点(1,-2),即当x=1时,y=-2.
所以,k=-2.
即反比例函数的解析式为:.
(2)点A(-5,m)在反比例函数图象上,所以。
点A的坐标为.
点A关于x轴的对称点不在这个图象上;
点A关于y轴的对称点不在这个图象上;
点A关于原点的`对称点在这个图象上;
例4已知函数为反比例函数.
(1)求m的值;
(2)它的图象在第几象限内?在各象限内,y随x的增大如何变化?
(3)当-3≤x≤时,求此函数的最大值和最小值.
解(1)由反比例函数的定义可知:解得,m=-2.
(2)因为-2<0,所以反比例函数的图象在第二、四象限内,在各象限内,y随x的增大而增大.
(3)因为在第个象限内,y随x的增大而增大。
所以当x=时,y最大值=;
当x=-3时,y最小值=.
所以当-3≤x≤时,此函数的最大值为8,最小值为.
例5一个长方体的体积是100立方厘米,它的长是y厘米,宽是5厘米,高是x厘米.
(1)写出用高表示长的函数关系式;
(2)写出自变量x的取值范围;
(3)画出函数的图象.
解(1)因为100=5xy,所以.
(2)x>0.
(3)图象如下:
说明由于自变量x>0,所以画出的反比例函数的图象只是位于第一象限内的一个分支.
四、交流反思
本节课学习了画反比例函数的图象和探讨了反比例函数的性质.
1.反比例函数的图象是双曲线(hyperbola).
2.反比例函数有如下性质:
(1)当k>0时,函数的图象在第一、三象限,在每个象限内,曲线从左向右下降,也就是在每个象限内y随x的增加而减少;
(2)当k<0时,函数的图象在第二、四象限,在每个象限内,曲线从左向右上升,也就是在每个象限内y随x的增加而增加.
五、检测反馈
1.在同一直角坐标系中画出下列函数的图象:
(1);(2).
2.已知y是x的反比例函数,且当x=3时,y=8,求:
(1)y和x的函数关系式;
(2)当时,y的值;
(3)当x取何值时,?
3.若反比例函数的图象在所在象限内,y随x的增大而增大,求n的值.
4.已知反比例函数经过点A(2,-m)和B(n,2n),求:
(1)m和n的值;
(2)若图象上有两点P1(x1,y1)和P2(x2,y2),且x1<0反比例教学设计(15)
成反比例的量教学设计
教学过程:
一、复习铺垫
1、成正比例的量有什么特征?
2、下表中的两种量是不是成正比例?为什么?
二、自主探究
(一)教学例1
1.出示例1,提出观察思考要求:
从表中你发现了什么?这个表同复习的表相比,有什么不同?
(1)表中的两种量是每小时加工的数量和所需的加工时间。
教师板书:每小时加工数和加工时间
(2)每小时加工的数量扩大,所需的加工时间反而缩小;每小时加工的数量缩小,所需的加工时间反而扩大。
教师追问:这是两种相关联的量吗?为什么?
(3)每两个相对应的数的乘积都是600.
2.这个600实际上就是什么?每小时加工数、加工时间和零件总数,怎样用式子表示它们之间的关系?教师板书:零件总数
每小时加工数加工时间=零件总数
3.小结
通过刚才的研究,我们知道,每小时加工数和加工时间是两种相关联的量,每小时加工数变化,加工时间也随着变化,每小时加工数乘以加工时间等于零件总数,这里的零件总数是一定的。
(二)教学例2
1.出示例2,根据题意,学生口述填表。
2.教师提问:
(1)表中有哪两种量?是相关联的量吗?
教师板书:每本张数和装订本数
(2)装订的本数是怎样随着每本的张数变化的?
(3)表中的两种量有什么变化规律?
(三)比较例1和例2,概括反比例的意义。
1.请你比较例1和例2,它们有什么相同点?
(1)都有两种相关联的量。
(2)都是一种量变化,另一种量也随着变化。
(3)都是两种量中相对应的两个数的积一定。
2.教师小结
像这样的两种量,我们就把它们叫做成反比例的量,它们的.关系叫做反比例关系。
3.如果用字母x和y表示两种相关联的量,用k表示它们的积一定,反比例关系可以用一个什么样的式子表示?
教师板书: xy =k(一定)
三、课堂小结
1、这节课我们学习了成反比例的量,知道了什么样的两种量是成反比例的量,也学会了怎样判断两种量是不是成反比例。在判断时,同学们要按照反比例的意义,认真分析,做出正确的判断。
2、通过今天的学习,正比例关系和反比例关系有什么相同点和不同点?
四、课堂练习
完成教材43页做一做
五、课后作业
练习七6、7、8、9题。
六、板书设计
成反比例的量 xy=k(一定)
每小时加工数加工时间=零件总数(一定)
每本页数装订本数=纸的总页数(一定)
教学目标:
1、理解反比例的意义。
2、能根据反比例的意义,正确判断两种量是否成反比例。
3、培养学生的抽象概括能力和判断推理能力。
教学重点:
引导学生理解反比例的意义。
教学难点:
利用反比例的意义,正确判断两种量是否成反比例。
成反比例的量教学设计三
教学过程:
一、复习铺垫
1、下面两种量是不是成正比例?为什么?
购买练习本的价钱0.80元,1本;1.60元,2本;3.20元,4本;4.80元6本。
2、成正比例的量有什么特征?
二、探究新知
1、导入新课:这节课我们继续学习常见的数量关系中的另一种特征成反比例的量。
2、教学P42例3。
(1)引导学生观察上表内数据,然后回答下面问题:
A、表中有哪两种量?这两种量相关联吗?为什么?
B、水的高度是否随着底面积的变化而变化?怎样变化的?
C、表中两个相对应的数的比值各是多少?一定吗?两个相对应的数的积各是多少?你能从中发现什么规律吗?D、这个积表示什么?写出表示它们之间的数量关系式
(2)从中你发现了什么?这与复习题相比有什么不同?
A、学生讨论交流。
B、引导学生回答:
(3)教师引导学生明确:因为水的体积一定,所以水的高度随着底面积的变化面变化。底面积增加,高度反而降低,底面积减少,高度反而升高,而且高度和底面积的乘积一定,我们就说高度和底面积成反比例关系,高度和底面积叫做成反比例的量。
(4)如果用字母x和y表示两种相关的量,用k表示它们的积一定,反比例可以用一个什么样的式子表示?板书:xy=k(一定)
三、巩固练习
1、想一想:成反比例的量应具备什么条件?
2、判断下面每题中的两个量是不是成反比例,并说明理由。
(1)路程一定,速度和时间。
(2)小明从家到学校,每分走的速度和所需时间。
(3)平行四边形面积一定,底和高。
(4)小林做10道数学题,已做的题和没有做的题。
(5)小明拿一些钱买铅笔,单价和购买的数量。
(6)你能举一个反比例的例子吗?
四、全课小节
这节课我们学习了成反比例的量,知道了什么样的两个量是成反比例的两个量,也学会了怎样判断两种量是不是成反比例。
五、课堂练习
P45~46练习七第6~11题。
教学目的:1、理解反比例的意义,能根据反比例的意义,正确的判断两种量是否成反比例。
2、通过引导学生讨论探究,分析合作,使学生进一步认识事物之间的联系和发展变化的规律。
3、初步渗透函数思想。
教学重点:引导学生总结出成反比例的量,是相关的两种量中相对应的两个数积一定,进而抽象概括出成反比例的关系式。
教学难点:利用反比例的意义,正确判断两个量是否成反比例。
《认识成反比例的量》优秀教学设计范文
作为一位优秀的人民教师,往往需要进行教学设计编写工作,教学设计是一个系统化规划教学系统的过程。那要怎么写好教学设计呢?下面是小编收集整理的《认识成反比例的量》优秀教学设计范文,仅供参考,大家一起来看看吧。
教学内容:
p47例2。
教学目标:
1、理解反比例的意义,能根据反比例的意义,正确的判断两种量是否成反比例。
2、通过引导学生讨论探究,分析合作,使学生进一步认识事物之间的联系和发展变化的规律。
3、初步渗透函数思想。
教学重点:
引导学生总结出成反比例的量,是相关的两种量中相对应的两个数积一定,进而抽象概括出成反比例的关系式。
教学难点:
利用反比例的意义,正确判断两个量是否成反比例。
教法:自主探究,合作交流。
学法:小组合作交流。
教具:课件。
教学过程:
一、定向导学(5分)。
1、下面两种量是不是成正比例?为什么?
购买练习本的价钱0。80元,1本;1。60元,2本;3。20元,4本;4。80元6本。
2、成正比例的量有什么特征?(口答)
3、出示学习目标
1、理解反比例的意义,能根据反比例的意义。
2、正确的判断两种量是否成反比例。
二、自主学习(15分)。
1、自学课本p47例2。
思考:
a、表中的两种量是( )和( )。这两种量是不是相关联?为什么?
b、水的高度是随着( )的变化而变化 ,水的'高度越( )杯子的底面积就越( )。
c、相对应的杯子底面积和水的高度的乘积分别是( ),一定吗?
d、这个积表示( )表示它们之间的数量关系式是( )。
(2)从中你发现了什么?这与复习题相比有什么不同?
a、学生讨论交流。
b、引导学生回答:
(3)教师引导学生明确:因为水的体积一定,所以水的高度随着底面积的变化面变化。底面积增加,高度反而降低,底面积减少,高度反而升高,而且高度和底面积的乘积一定,我们就说高度和底面积成反比例关系,高度和底面积叫做成反比例的量。
(4)如果用字母x和y表示两种相关的量,用k表示它们的积一定,反比例可以用一个什么样的式子表示?板书:x×y=k(一定)
三、合作交流(6分)
1、成反比例的量应具备什么条件?
2、数学书第48页的做一做,学生独立完成,集体订正。
四、质疑探究(4分)
举出生活中反比例关系的例子
五、小结检测(4分)。
1、说说反比例的意义,如何判断两种量是否成反比例。
2、检测
判断下面每题中的两个量是不是成反比例,并说明理由。
(1)路程一定,速度和时间。
(2)小明从家到学校,每分走的速度和所需时间。
(3)平行四边形面积一定,底和高。
(4)小林做10道数学题,已做的题和没有做的题。
(5)小明拿一些钱买铅笔,单价和购买的数量。
(6)你能举一个反比例的例子吗?
3、第51页8题
4、第51页9题
六、堂清 (6分)
p51练习九第10、11、12题。
板书设计:
成反比例的量
两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。
用字母表示: x×y=k(一定)
《反比例》教学设计范文
作为一名优秀的教育工作者,往往需要进行教学设计编写工作,借助教学设计可以提高教学质量,收到预期的教学效果。一份好的教学设计是什么样子的呢?下面是小编精心整理的《反比例》教学设计范文,希望对大家有所帮助。
教学目标:
知识与技能:
1.结合丰富的实例,认识反比例。
2.能根据反比例的意义,判断两个相关联的量是不是反比例。 过程与方法:通过猜想、分析、对比、概括、举例、判断等活动,结合实例,理解反比例的意义,认识反比例。
情感态度价值观:培养学生自主、合作学习、探索新知的能力,激发学习数学的热情。感受反比例关系在生活中的广泛应用。初步渗透函数思想。
教学重点:
认识反比例,根据反比例意义判断两个相关联的量是否成 反比例。
教学难点:
认识反比例,根据反比例意义判断两个相关联的量是否成 反比例。
教具准备:
电脑课件
教学过程:
一、复习引入
1、计算
2、判断下面各题中的两种量是否成正比例?为什么?
(1)文具盒的单价一定,买文具盒的个数和总价。
(2)一堆货物一定,运走的量和剩下的量。
(3)汽车行驶的速度一定,行驶的路程和时间。
3、说说什么是正比例。
师:大家对正比例知识理解掌握得非常好,接下来我们就该学习什么了?
二、出示学习目标
1.能根据反比例的'意义,判断两个相关联的量是不是反比例。
2通过猜想、分析、对比、概括、举例、判断等活动,结合实例,理解反比例的意义,认识反比例。
3培养学生探索研究的能力,感受反比例关系在生活中的广泛应用。
三、指导自学
师:给你们讲个小故事:
有一个贪婪的财主,拿了一匹上好的布料准备做一顶帽子,到了裁缝店。
觉得这样好的布料做一顶帽子似乎浪费了,于是问裁缝:“这匹布可以做两顶帽子吗?”裁缝看了看财主一眼,说:“可以。”财主见他回答得那么爽快,心想,这裁缝肯定是从中占了些什么便宜,于是又问,“那做3顶帽子吗?”裁缝依然很爽快地说:“行!”这时,财主更加疑惑了,嘀咕着:“多好的一匹布啊,那我做4顶可以吗”“行!”裁缝仍然很快地回答。经过一翻的较量后,财主最后问:“那我想做10顶帽子可以吗?”裁缝迟疑了一会,然后打量着财主,慢慢的说:“可以的。”这时财主才放下心来,心想:这匹布料如果只做一顶帽子,那就便宜裁缝了。瞧!这不让我说到10顶了吧。我还真聪明!过了几天,财主到了裁缝店取帽子,结果一看,顿时傻了眼:10顶的帽子小得只能戴在手指头上了!
学习提示:
独立思考?
1、“为什么同一匹布,裁缝说做1顶帽子,2顶帽子,10顶都可以呢?”
2、故事中相关的数量关系式是什么?哪两个是变化的量,怎样变?另一个是什么量?有什么特点?
合作学习
小组讨论上述的问题。
看书合作学习
1、把25页例2、例3的表格补充完整。
2、每个表格中有哪些变量?有不变的量吗?分别是什么?变化有什么规律?相关的数量关系式是什么?
3、三个数量关系式有相同点吗?是什么?你能把这种变化规律用一个含有字母的关系式来表示吗?
4、你知道什么是反比例吗?
四、学生自学
五、检查自学效果
让学生说说自学要求中的内容。
师归纳:两种相关联的量,一种量随着另一种量的变化而变化。
在变化过程中两种量的积一定,那么这两种量成反比例。
六、引导更正,指导运用
你们还找出类似这样关系的量来吗?”
学生:要走一段路,速度越慢(快),用的时间就越多(少)
运一堆货物,每次运的越多(少),运的次数就越小(多)
百米赛跑,路程100米不变,速度和时间是反比例;
排队做操,总人数不变,排队的行数和每行的人数是反比例;
长方体的体积一定,底面积和高是反比例。
七、当堂训练
基础练习
1、填空
两种 _____ 的量,一种量随着另一种量变化,如果这两种量中相对应的两个数的______,这两种量叫做成反比例的量,它们的关系叫做_______关系。
2、判断下面每题中的两种量是不是成反比例,并说明理由。
(1)煤的总量一定,每天的烧煤量和能够烧的天数。
(2)张伯伯骑自行车从家到县城,骑自行车的速度和所需的时间。
(3)生产电视机的总台数一定,每天生产的台数和所用的天数。
(4)圆柱体的体积一定,底面积和高。
(5)小林做10道数学题,已做的题和没有做的题。
(6)长方形的长一定,面积和宽。
(7)平行四边形面积一定,底和高。
提高练习
1、一长方形的周长为20厘米,若长是9厘米,则宽是1厘米。请你填写下表,并判断这个长方形在周长不变的情况下,长和宽是否成反比例,并说明理由。长/cm 9 8765
宽/cm 1
八、小结
通过这节课的学习,你有什么收获?
这节课我们学习了成反比例的量,知道了什么样的两种量是成反比例的量,也学会了怎样判断两种量是不是成反比例。 板书:反比例
相关联,一个量变化,另一个量也随着变化积一定
xy=k(一定)
《反比例》教学反思
反比例关系是一种重要的数量关系,是六年级数学教学的一个重点,内容比较抽象、难懂,怎样化解这一教学难点,使学生有效地理解和掌握这一重点内容呢?我在本课的教学中做了一些尝试。
我从身边的现实生活中发掘素材,组织活动,让学生从活动中发现数学问题,从而引入学习内容和学习目标。这就激发了学生学习数学的兴趣,激起了自主参与的积极性和主动性,为自主探究新知创设好了情境。在教学中,我又不失时机地组织学生合作学习,讨论、分析,因而取得满意的效果:学生自己弄清了成反比例的两种量之间的数量关系,初步认识了反比例的含义。我考虑到做一做和例3相仿,必须注意学习方式不能雷同。所以采取请学生当“老师”的方式,进一步把自主权交给学生,营造了民主、平等、宽松、和谐的课堂氛围,因而对做一做的学习探索取得更深一层的效果。然后通过例3、做一做的比较,归纳出成反比例的两种量的特点,再和正比例的意义作比较,猜想出反比例的意义。最后经过读书验证,得出反比例的意义和关系式。既完成了本课的教学目标,又培养了学生的推理的能力。
反比例函数及其图像教学设计范文
作为一名为他人授业解惑的教育工作者,编写教学设计是必不可少的,教学设计把教学各要素看成一个系统,分析教学问题和需求,确立解决的程序纲要,使教学效果最优化。那么优秀的教学设计是什么样的呢?下面是小编为大家整理的反比例函数及其图像教学设计范文,欢迎大家借鉴与参考,希望对大家有所帮助。
目标:
1、使学生理解反比例函数的概念;
2、使学生能根据问题中的条件确定反比例函数的解析式;
3、能结合图象理解反比例函数的性质。
4、培养学生 用 数形结合的思想与方法解决数学问题。
重点: 反比例函数的图象的画法及性质
难点:
1、 选取适当的点画反比例函数的图象;
2、 结合反比例函数图象说出它们的性质。
教学过程:
一、复习引入
1、什么叫一次函数?什么叫正比例函数?写出它们的一般式。它们有何关系?
2、正比例函数的图象与性质:
正比例函数 反比例函数
解析式 y=kx(k0) y=k/x或 (k0)
图象 经过(0,0)与(1,k)两点的直线 双曲线
当k0时,图象经过一、三象限;当k0时,图象经过二、四象限; 当k0时,图象经过一、三象限;当k 0时,图象经过二、四象限;
性质 当k0时,Y随着X的增大而增大;当k0时,Y随着X的增大而减小; 当k0时,Y随着X的增大而减小;当 k0时,Y随着X的增大而增大;
3、 学学 过反比例关系下面我们举几个例子
例1 矩形的面积是12cm2,写出矩形的一边y(cm)和另一边x(cm)之间的用函数关系式.
例2 两个变量x和y的乘积等于-6,写出y与x之间的函数关系式.
4、提出问题:
上面两个问题从关系式看,它们是不是正比例函数?为什么?
答:不是,因为不符合正比例函数y=kx的形式,它们的关系是反比例关系.
二、讲解新课
1、 反比例函数的定义
一般地, (k为常数,k0)叫做反比例函数,即y是x的反比例函数,也可以写成
例3、 知函数y=(m2+m-2)xm -2m-9是反比例函数,求m的值。
例4、 已知变量y与 x成反比例,当x=3时, y=―6;那么当y=3时,x的'值是 ;
例5、 已知点A(―2,a)在函数 的图像上,则a= ;
2、反比例函数的图象
例6、画出反比例函数 与 的图象(师生分别画图)
步骤:(1)列表(强调x不能取0,为保证其图的对称性,x要取适当的值)
(2)描点(准确性要高)
(3)连线(用一条平滑曲线根据自变量由小到大的顺序把这些点连结起来)
归纳:
(1)反比例函数的图象由两条曲线组成 ,叫做双曲线。
(2)讨论反比例函数图象的画法:
① 反比例函数的图象不是直线,两点法是不能画的,它的图象是双曲线,图象关于原点成中心对称.列表时自 变量的值可以选取绝对值相等而符号相反的数(如1,2等等)相应地就得到绝对值相等而符号相反的对应的函数值. 这样即可以简化计算的手续,又便于在坐标平面内找到点.
② 反比例函数的图象的两支都无限地接近但永远不能达到x轴和y轴,所以图象与x轴y轴没有交点.如果发现画的图象无限接近坐标轴后,又偏离坐标轴,这也是错误的,教师可在课堂上演示,并说明错误的原因.
③ 选取的点越多画的图越准确;
④ 画图注意其美观性(对称性、延伸特征)
3、反比例函数的性质
再让学生观察黑板上的图,提问:
(1)当 时,双曲线的两个分支各在哪个象限?在每个象限内,y随x的增 大怎样变化?(2)当 时,双曲线的两个分支各在哪个象限?在每个象限内,y随x的增大怎样变化?这两个问题由学生讨论总结之后回答。
教师板书:
(1)当k0时,函数图象的两个分支分别分布在第一、三象限内,在每一个象限中,y随x的增大而减小;当k0时,两个分支分别分布在第二、四象限内,在每一个象限中,y随x的增大而增大.
(2)两 个分支都无限接近但永远不能达到x轴和y轴.4、反比例函数的这一性质与正比例函数的性质有何异同?
例6、已知函数 在每一象限内,y随x的减小而减小,那么k的取值范围是
例7、在同一坐标系中,函数 和y=kx+3的图像大 致是( )
A B C D
4、 课堂练习:第129页1~3
5、课堂小结
【微语】好脾气是磨出来的,坏毛病都是惯出来的,爱挑事都是闲出来的。
微信扫码关注公众号
获取更多考试热门资料