学分高考 考试资料 > 知识点

反比知识点(集锦11篇)

发布时间: 2024-08-12 20:45:32

反比知识点(1)

反比例函数主要考察三个方面

1)反比例函数图像的性质;

2)求反比例函数解析式;

3)K的几何性质的应用。

以上几点考察基本上都是和一次函数,相似,全等,方程,圆,三角函数,勾股定理等知识相结合考察,单一命题的机会比较少同时题目也比较简单。本专题主要针对B卷类近几年考到的填空题做出总结,让同学们能够从多角度,多方位的训练。

反比例函数的定义

如果两个变量x,y之间的对应关系可以表示成y=k/x(k为常数,k≠0)的形式,那么称y是x的反比例 函数。y是x的反比例函数?函数表达式为y=k/x或y=kxˉ1或xy=k(k为常数,k≠0)。

反比例专题

我们总结出六类常考题型:

1)由反比例函数k的几何意义转化出三角形或梯形之间面积的等量关系题型。

2)由反比例函数和一次函数相交形成的线段等量关系题型。

3)由反比例函数和一次函数相交求交点坐标的题型。

4)反比例函数与相似三角形综合考察求k或线段比题型。

5)反比例函数图像的分布与k之间的关系题型

6)反比例函数与三角函数,方程(组)等有关的问题。

反比知识点(2)

定义:形如函数y=k/x(k为常数且k≠0)叫做反比例函数,其中k叫做比例系数,x是自变量,y是自变量x的函数,x的取值范围是不等于0的一切实数。

反比例函数的性质

函数y=k/x 称为反比例函数,其中k≠0,其中X是自变量,

当k>0时,图象分别位于第一、三象限,同一个象限内,y随x的增大而减小;当k<0时,图象分别位于二、四象限,同一个象限内,y随x的增大而增大。

>0时,函数在x<0上同为减函数、在x>0上同为减函数;k<0时,函数在x<0上为增函数、在x>0上同为增函数。

的取值范围是: x≠0;

y的取值范围是:y≠0。

因为在y=k/x(k≠0)中,x不能为0,y也不能为0,所以反比例函数的图象不可能与x轴相交,也不可能与y轴相交。 但随着x无限增大或是无限减少,函数值无限趋近于0,故图像无限接近于x轴

反比例函数的图象既是轴对称图形,又是中心对称图形,它有两条对称轴 y=x y=-x(即第一三,二四象限角平分线),对称中心是坐标原点。

反比例函数的一般形式

(k为常数,k≠0)的形式,那么称y是x的反比例函数。

其中,x是自变量,y是函数。由于x在分母上,故取x≠0的一切实数,看函数y的取值范围,因为k≠0,且x≠0,所以函数值y也不可能为0。

补充说明:反比例函数的解析式又可以写成: (k是常数,k≠0).

要求出反比例函数的解析式,利用待定系数法求出k即可.

反比知识点(3)

1、反比例函数的表达式

X是自变量,Y是X的函数

y=k/x=k?1/x

xy=k

y=k?x^(-1)(即:y等于x的负一次方,此处X必须为一次方)

y=kx(k为常数且k≠0,x≠0)若y=k/nx此时比例系数为:k/n

2、函数式中自变量取值的范围

①k≠0;②在一般的情况下,自变量x的取值范围可以是不等于0的任意实数;③函数y的取值范围也是任意非零实数。

解析式y=k/x其中X是自变量,Y是X的函数,其定义域是不等于0的一切实数

y=k/x=k?1/x

xy=k

y=k?x^(-1)

y=kx(k为常数(k≠0),x不等于0)

3、反比例函数图象

反比例函数的图像属于以原点为对称中心的中心对称的双曲线(hyperbola),

反比例函数图像中每一象限的每一支曲线会无限接近X轴Y轴但不会与坐标轴相交(K≠0)。

4、反比例函数中k的几何意义是什么?有哪些应用?

过反比例函数y=k/x(k≠0),图像上一点P(x,y),作两坐标轴的垂线,两垂足、原点、P点组成一个矩形,矩形的面积S=x的绝对值_y的.绝对值=(x_y)的绝对值=|k|

研究函数问题要透视函数的本质特征。反比例函数中,比例系数k有一个很重要的几何意义,那就是:过反比例函数图象上任一点P作x轴、y轴的垂线PM、PN,垂足为M、N则矩形PMON的面积S=PM?PN=|y|?|x|=|xy|=|k|。

所以,对双曲线上任意一点作x轴、y轴的垂线,它们与x轴、y轴所围成的矩形面积为常数。从而有k的绝对值。在解有关反比例函数的问题时,若能灵活运用反比例函数中k的几何意义,会给解题带来很多方便。

5、反比例函数性质有哪些?

当k>0时,图象分别位于第一、三象限,同一个象限内,y随x的增大而减小;当k<0时,图象分别位于二、四象限,同一个象限内,y随x的增大而增大。

>0时,函数在x<0上同为减函数、在x>0上同为减函数;k<0时,函数在x<0上为增函数、在x>0上同为增函数。定义域为x≠0;值域为y≠0。

因为在y=k/x(k≠0)中,x不能为0,y也不能为0,所以反比例函数的图象不可能与x轴相交,也不可能与y轴相交。

在一个反比例函数图象上任取两点P,Q,过点P,Q分别作x轴,y轴的平行线,与坐标轴围成的矩形面积为S1,S2则S1=S2=|K|

反比例函数的图象既是轴对称图形,又是中心对称图形,它有两条对称轴y=xy=-x(即第一三,二四象限角平分线),对称中心是坐标原点。

若设正比例函数y=mx与反比例函数y=n/x交于A、B两点(m、n同号),那么AB两点关于原点对称。

设在平面内有反比例函数y=k/x和一次函数y=mx+n,要使它们有公共交点,则n^2+4k?m≥(不小于)0。

反比例函数y=k/x的渐近线:x轴与y轴。

反比例函数关于正比例函数y=x,y=-x轴对称,并且关于原点中心对称.

反比例上一点m向x、y分别做垂线,交于q、w,则矩形mwqo(o为原点)的面积为|k|

值相等的反比例函数重合,k值不相等的反比例函数永不相交。

|k|越大,反比例函数的图象离坐标轴的距离越远。

反比例函数图象是中心对称图形,对称中心是原点

反比知识点(4)

⑴等号左边是函数,等号右边是一个分式。分子是不为零的常数(也叫做比例系数),分母中含有自变量,且指数为1。

⑵比例系数

⑶自变量的取值为一切非零实数。

⑷函数的取值是一切非零实数。

反比例函数高一数学知识点

形如y=k/x(k为常数且k≠0)的函数,叫做反比例函数。

自变量x的取值范围是不等于0的一切实数。

反比例函数图像性质:

反比例函数的图像为双曲线。

由于反比例函数属于奇函数,有f(-x)=-f(x),图像关于原点对称。

另外,从反比例函数的解析式可以得出,在反比例函数的图像上任取一点,向两个坐标轴作垂线,这点、两个垂足及原点所围成的矩形面积是定值,为?k?。

如图,上面给出了k分别为正和负(2和-2)时的函数图像。

当K>0时,反比例函数图像经过一,三象限,是减函数

当K<0时,反比例函数图像经过二,四象限,是增函数

反比例函数图像只能无限趋向于坐标轴,无法和坐标轴相交。

知识点:

过反比例函数图象上任意一点作两坐标轴的垂线段,这两条垂线段与坐标轴围成的矩形的面积为|k|。

对于双曲线y=k/x,若在分母上加减任意一个实数(即y=k/(x±m)m为常数),就相当于将双曲线图象向左或右平移一个单位。(加一个数时向左平移,减一个数时向右平移)

反比知识点(5)

当k>0时,图象分别位于第一、三象限,同一个象限内,y随x的增大而减小;当k<0时,图象分别位于二、四象限,同一个象限内,y随x的增大而增大。

>0时,函数在x<0上同为减函数、在x>0上同为减函数;k<0时,函数在x<0上为增函数、在x>0上同为增函数。定义域为x≠0;值域为y≠0。

因为在y=k/x(k≠0)中,x不能为0,y也不能为0,所以反比例函数的图象不可能与x轴相交,也不可能与y轴相交。

在一个反比例函数图象上任取两点P,Q,过点P,Q分别作x轴,y轴的平行线,与坐标轴围成的矩形面积为S1,S2则S1=S2=|K|

反比例函数的图象既是轴对称图形,又是中心对称图形,它有两条对称轴y=xy=-x(即第一三,二四象限角平分线),对称中心是坐标原点。

若设正比例函数y=mx与反比例函数y=n/x交于A、B两点(m、n同号),那么AB两点关于原点对称。

设在平面内有反比例函数y=k/x和一次函数y=mx+n,要使它们有公共交点,则n^2+4k·m≥(不小于)0。

反比例函数y=k/x的渐近线:x轴与y轴。

反比例函数关于正比例函数y=x,y=-x轴对称,并且关于原点中心对称.

反比例上一点m向x、y分别做垂线,交于q、w,则矩形mwqo(o为原点)的面积为|k|

值相等的反比例函数重合,k值不相等的反比例函数永不相交。

|k|越大,反比例函数的图象离坐标轴的距离越远。

反比例函数图象是中心对称图形,对称中心是原点

反比知识点(6)

y=k/x(k≠0)的图象叫做双曲线.

当k>0时,双曲线在一、三象限(在每一象限内,从左向右降);

当k<0时,双曲线在二、四象限(在每一象限内,从左向右上升).

因此,它的增减性与一次函数相反.

以上对反比例函数知识点的讲解,相信同学们能很好的掌握了,希望同学们能很好的学习知识点。

初中数学知识点总结:平面直角坐标系

下面是对平面直角坐标系的内容学习,希望同学们很好的掌握下面的内容。

平面直角坐标系

平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。

水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。

平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合

三个规定:

①正方向的规定横轴取向右为正方向,纵轴取向上为正方向

②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。

③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。

相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。

反比知识点(7)

定义:形如函数y=k/x(k为常数且k≠0)叫做反比例函数,其中k叫做比例系数,x是自变量,y是自变量x的函数,x的取值范围是不等于0的一切实数。

反比例函数的性质

函数y=k/x 称为反比例函数,其中k≠0,其中X是自变量,

当k>0时,图象分别位于第一、三象限,同一个象限内,y随x的增大而减小;当k<0时,图象分别位于二、四象限,同一个象限内,y随x的增大而增大。

>0时,函数在x<0上同为减函数、在x>0上同为减函数;k<0时,函数在x<0上为增函数、在x>0上同为增函数。

的取值范围是: x≠0;

y的取值范围是:y≠0。

因为在y=k/x(k≠0)中,x不能为0,y也不能为0,所以反比例函数的图象不可能与x轴相交,也不可能与y轴相交。 但随着x无限增大或是无限减少,函数值无限趋近于0,故图像无限接近于x轴

反比例函数的图象既是轴对称图形,又是中心对称图形,它有两条对称轴 y=x y=-x(即第一三,二四象限角平分线),对称中心是坐标原点。

反比例函数的一般形式

(k为常数,k≠0)的形式,那么称y是x的反比例函数。

其中,x是自变量,y是函数。由于x在分母上,故取x≠0的一切实数,看函数y的取值范围,因为k≠0,且x≠0,所以函数值y也不可能为0。

补充说明:反比例函数的解析式又可以写成: (k是常数,k≠0).

要求出反比例函数的解析式,利用待定系数法求出k即可.

反比知识点(8)

⑴等号左边是函数,等号右边是一个分式。分子是不为零的常数(也叫做比例系数),分母中含有自变量,且指数为1。

⑵比例系数

⑶自变量的取值为一切非零实数。

⑷函数的取值是一切非零实数。

反比例函数高一数学知识点

形如y=k/x(k为常数且k≠0)的函数,叫做反比例函数。

自变量x的取值范围是不等于0的一切实数。

反比例函数图像性质:

反比例函数的图像为双曲线。

由于反比例函数属于奇函数,有f(-x)=-f(x),图像关于原点对称。

另外,从反比例函数的解析式可以得出,在反比例函数的图像上任取一点,向两个坐标轴作垂线,这点、两个垂足及原点所围成的矩形面积是定值,为?k?。

如图,上面给出了k分别为正和负(2和-2)时的函数图像。

当K>0时,反比例函数图像经过一,三象限,是减函数

当K<0时,反比例函数图像经过二,四象限,是增函数

反比例函数图像只能无限趋向于坐标轴,无法和坐标轴相交。

知识点:

过反比例函数图象上任意一点作两坐标轴的垂线段,这两条垂线段与坐标轴围成的矩形的面积为|k|。

对于双曲线y=k/x,若在分母上加减任意一个实数(即y=k/(x±m)m为常数),就相当于将双曲线图象向左或右平移一个单位。(加一个数时向左平移,减一个数时向右平移)

反比知识点(9)

反比例性质

1规律:反比函数与一次函数(与正比例函数相交,交点关于原点对称)相交, 求线段数量关系时,切记“原点O到两交点的距离是相等的”若给出反比函数解析式,那么最终求得的结果的过程肯定要转化成关于“k”的几何意义。

2规律:一次函数与反比函数相交且两函数解析式都未知,此时一次函数所在直线与交点分别于x轴,y轴做垂线的交点所连接的线段是相 互平行的,同时一次函数与反比函数的交点到一次函数与x轴,y轴的交点的距离是相等的。

3规律:题目中给出线段比例和四边形的面积求k 问题,利用同底等高三角形面积与高之间的关系,面积与k之间的关系。求出k(此时不用具体求出点坐标)。

4规律:有中点时利用中点坐标公式,再根据反比函数上任何一点 处的几何意义都相同的思想转化出面积问题。

5规律:若反比例函数图像经过多个点,那么在这几点处的几何意义是相同的。根据相等的关系我们可以将等积量转化成等比量。

6规律:当反比例函数与正三角形的某一边有交点时,可以根据正三角形的特性表示出该交点的坐标,从而计算出该点的坐标得到k。

7规律:当题目给出的线段之间的数量关系时,可构造直角三角形用相似的关系具体的求出点的坐标计算k的值。

8规律:当反比例函数解析式已知,而要求图像上点的坐标问题。同长情况下用全等或相似的关系将点的坐标用同一字母代数式表示出来,再利用k的几何意义求出点坐标。

9规律:直接利用面积比和相似比之间的关系确定k值。

10规律:当一次函数与反比例函数相交有特殊角度时(30°,45°,60°)或一次函数k为( √3/3 ,√3 )时,将所给的等量数据转化成反比函数图像上点的横纵坐标乘积(不用具体求出坐标点)得k值。

11规律:巧用k值,建立方程(方程组)解答。

12规律:类似反比例函数的问题,根据题目的特殊条件不用具体计算线段的长度,应用对比,转化思想解答。

13规律:给出反比例函数解析式,应用相似比与面积比之间的关系,面积与k之间的关系解答。

反比知识点(10)

1、反比例函数的表达式

X是自变量,Y是X的函数

y=k/x=k·1/x

xy=k

y=k·x^(-1)(即:y等于x的负一次方,此处X必须为一次方)

y=kx(k为常数且k≠0,x≠0)若y=k/nx此时比例系数为:k/n

2、函数式中自变量取值的范围

①k≠0;②在一般的情况下,自变量x的'取值范围可以是不等于0的任意实数;③函数y的取值范围也是任意非零实数。

解析式y=k/x其中X是自变量,Y是X的函数,其定义域是不等于0的一切实数

y=k/x=k·1/x

xy=k

y=k·x^(-1)

y=kx(k为常数(k≠0),x不等于0)

3、反比例函数图象

反比例函数的图像属于以原点为对称中心的中心对称的双曲线(hyperbola),

反比例函数图像中每一象限的每一支曲线会无限接近X轴Y轴但不会与坐标轴相交(K≠0)。

4、反比例函数中k的几何意义是什么?有哪些应用?

过反比例函数y=k/x(k≠0),图像上一点P(x,y),作两坐标轴的垂线,两垂足、原点、P点组成一个矩形,矩形的面积S=x的绝对值_y的绝对值=(x_y)的绝对值=|k|

研究函数问题要透视函数的本质特征。反比例函数中,比例系数k有一个很重要的几何意义,那就是:过反比例函数图象上任一点P作x轴、y轴的垂线PM、PN,垂足为M、N则矩形PMON的面积S=PM·PN=|y|·|x|=|xy|=|k|。

所以,对双曲线上任意一点作x轴、y轴的垂线,它们与x轴、y轴所围成的矩形面积为常数。从而有k的绝对值。在解有关反比例函数的问题时,若能灵活运用反比例函数中k的几何意义,会给解题带来很多方便。

反比知识点(11)

反比例函数知识点总结

在学习中,大家最熟悉的就是知识点吧?知识点也可以理解为考试时会涉及到的知识,也就是大纲的分支。哪些知识点能够真正帮助到我们呢?下面是小编为大家收集的反比例函数知识点总结,希望能够帮助到大家。

若k为常数,则函数y=k/x就是反比例函数,自变量和自变量的函数分别是x和y,又因为反比例函数式本身是一个分数,所以x可以是任意不等于0的实数。同时,函数式有时候也写成y=k·x^(-1)或者k=xy.反比例和正比例函数以及一次函数等都是二次函数的基础,它们的应用一样广泛,所以不要轻视反比例函数。

那么,怎样学好反比例函数?其实反比例函数不难,只要能理清思路,把反比例函数知识点理清,把反比例函数图像理解透彻,一切是那么容易,总之,只要你能熟练数形结合,任何函数学习都会轻松很多。

步骤/方法以下是反比例函数知识点总结

1、反比例函数的表达式

X是自变量,Y是X的函数

y=k/x=k·1/x

xy=k

y=k·x^(-1)(即:y等于x的`负一次方,此处X必须为一次方)

y=kx(k为常数且k≠0,x≠0)若y=k/nx此时比例系数为:k/n

2、函数式中自变量取值的范围

①k≠0;②在一般的情况下,自变量x的取值范围可以是不等于0的任意实数;

③函数y的取值范围也是任意非零实数。

解析式y=k/x其中X是自变量,Y是X的函数,其定义域是不等于0的一切实数

y=k/x=k·1/x

xy=k

y=k·x^(-1)

y=kx(k为常数(k≠0),x不等于0)

3、反比例函数图象

反比例函数的图像属于以原点为对称中心的中心对称的双曲线(hyperbola)。

反比例函数图像中每一象限的每一支曲线会无限接近X轴Y轴但不会与坐标轴相交(K≠0)。

4、反比例函数中k的几何意义是什么?有哪些应用?

过反比例函数y=k/x(k≠0),图像上一点P(x,y),作两坐标轴的垂线,两垂足、原点、P点组成一个矩形,矩形的面积S=x的绝对值*y的绝对值=(x*y)的绝对值=|k|

研究函数问题要透视函数的本质特征。反比例函数中,比例系数k有一个很重要的几何意义,那就是:过反比例函数图象上任一点P作x轴、y轴的垂线PM、PN,垂足为M、N则矩形PMON的面积S=PM·PN=|y|·|x|=|xy|=|k|。

所以,对双曲线上任意一点作x轴、y轴的垂线,它们与x轴、y轴所围成的矩形面积为常数。从而有k的绝对值。在解有关反比例函数的问题时,若能灵活运用反比例函数中k的几何意义,会给解题带来很多方便。

5、反比例函数性质有哪些?

1.当k>0时,图象分别位于第一、三象限,同一个象限内,y随x的增大而减小;当k<0时,图象分别位于二、四象限,同一个象限内,y随x的增大而增大。

2.k>0时,函数在x<0上同为减函数、在x>0上同为减函数;k<0时,函数在x<0上为增函数、在x>0上同为增函数。定义域为x≠0;值域为y≠0。

3.因为在y=k/x(k≠0)中,x不能为0,y也不能为0,所以反比例函数的图象不可能与x轴相交,也不可能与y轴相交。

4.在一个反比例函数图象上任取两点P,Q,过点P,Q分别作x轴,y轴的平行线,与坐标轴围成的矩形面积为S1,S2则S1=S2=|K|

5.反比例函数的图象既是轴对称图形,又是中心对称图形,它有两条对称轴y=xy=-x(即第一三,二四象限角平分线),对称中心是坐标原点。

6.若设正比例函数y=mx与反比例函数y=n/x交于A、B两点(m、n同号),那么AB两点关于原点对称。

7.设在平面内有反比例函数y=k/x和一次函数y=mx+n,要使它们有公共交点,则n^2+4k·m≥(不小于)0。

8.反比例函数y=k/x的渐近线:x轴与y轴。

9.反比例函数关于正比例函数y=x,y=-x轴对称,并且关于原点中心对称.

10.反比例上一点m向x、y分别做垂线,交于q、w,则矩形mwqo(o为原点)的面积为|k|

11.k值相等的反比例函数重合,k值不相等的反比例函数永不相交。

12.|k|越大,反比例函数的图象离坐标轴的距离越远。

13.反比例函数图象是中心对称图形,对称中心是原点

【微语】亲情就像平常的空气,当我们被爱情压的喘不过气时,亲情的空气悄然而至,我们如获新生。

温馨提示:
本文【反比知识点(集锦11篇)】由作者学习这件小事提供。该文观点仅代表作者本人,学分高考系信息发布平台,仅提供信息存储空间服务,若存在侵权问题,请及时联系管理员或作者进行删除。
我们采用的作品包括内容和图片部分来源于网络用户投稿,我们不确定投稿用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的权利,请联系我站将及时删除。
内容侵权、违法和不良信息举报
Copyright @ 2024 学分高考 All Rights Reserved 版权所有. 湘ICP备17021685号