学分高考 考试资料 > 教学设计

梯形面积的计算教学设计(合集10篇)

发布时间: 2024-08-13 09:32:34

梯形面积的计算教学设计(1)

教学目标:

(1)探究梯形面积计算,理解公式的推 导过程,会应用公式正确计算梯形的面积。

(2)培养学生合作学习的能力以及动手操作能力。

(3)进一步渗透旋转、平移的数学思想。

教学重点:理解并掌握梯形面积公式的计算方法。

教学难点:理解梯形面积公式的推导过程。

教具准备:多媒体课件

教学过程:

一、创设情境,引出问题

教师用多媒体课出示:王大爷家有一块果园地(梯形地上底300米,下底200米,高100米),如果每棵桃树占地10平方米,那么王大爷家这块果园地里一共有多少棵桃树?

问:同学们这块地是什么图形啊?

生1:这是一个梯形。

问:要想求果园地里一共有多少棵桃树,必须先知道什么呢?

生2:必须先知道梯形的面积。

师:今天我们这节课就来研究“梯形面积的计算”(板书)。

二、探究新知。

(1)、铺垫孕伏。

组织学生回忆平行四边形、三角形面积公式推导的方法及过程,

重点突出旋转、平移、割补的数学思想。

(2)、协作研讨,探求方法

1、教师把学生分成若干个小组,每个小组4至6名学生,每个小组发给若干张梯形纸(上底3厘米,下底5厘米,高4厘米)。

师:谁能介绍一下这个梯形?

生3:这个梯形的上底是3厘米,下底是5厘米,高是4厘米。

师:下面我们各小组利用手中的工具来探究梯形面积的计算公式,看哪个小组的方法最多!哪个小组协作能力最强!

2、教师用课件出示探究要注意的事项,让学生进行小组合作,动手操作,探究梯形面积的计算。(教师注意合作方法的指导,要求同学之间互相交流、合作,把梯形面积的计算方法小组汇报给同学听,把计算过程写在本子上,最后推荐代表进行汇报。每一次汇报,教师利用多媒体演示、小结。)

生4: (3+5)42=16(平方厘米)

生5: 542+342=16(平方厘米)

生6: (5+3)42=16(平方厘米)

生7: (5-3)42+34=16(平方厘米)

生8: (5+3)(42)=16(平方厘米)

生9: (3+5)24=16(平方厘米)

生10: 34+(5-3)42=16(平方厘米)

师生交流、点评……

3、总结规律,渗透数学思想方法

师:这些方法有什么共同的地方吗?

生11:结果都是16平方厘米。

生12:每种方法的计算过程中都用到3、4、5、2这几个数字。

师:这几个数字和梯形有什么关系吗?

生13:梯形的上底是3厘米,下底是5厘米,高是4厘米。

师:现在谁能猜一猜梯形的面积计算公式是怎样的?

生14:梯形的面积=(上底+下底)高2

师:如果用字母S表示梯形的面积,a表示梯形的上底,b表示梯形的下底,h表示梯形的高,那么梯形的面积计算公式用字母怎样表示?

生15:S=(a+b)h2

三、应用知识,解决问题

1、回到课堂初提出的问题,让学生帮王大爷计算果园地里一共有多少棵桃树。

生16:(300+200)100210=2500(棵)

2、学生完成基础变式练习:“做一做”和练习十八的1~3题。

3、提高能力练习:共同探讨练习十八的第四题。

四、知识小结,体验学习的快乐!

教学反思:

新的数学课程标准指出:教师不只做教材忠实的实施者,而应该做教材的开发者和建设者,教材的教育价值和智力价值能否得到充分发挥,关键在与教师对教材的把握。《梯形的面积》一课,是在学生掌握了平行四边形和三角形面积计算的基础上进行教学的。学生已掌握了一定的学习方法,形成了一定的推理能力。为了充分利用原有的知识,探索、验证,从而获得新知,给每个学生提供思考、表现、创造的机会,使他们成为知识的发现者、创造者,培养学生自我探究和实践能力。这节课上完以后我觉得有成功,也有一些不足:

一、动手操作,培养探索能力

在推导梯形面积计算公式时,安排学生合作学习,放手让学生自己利用前面的学习经验,动手把梯形转化成已经学过的图形,并让学生通过找图形之间的联系,自主从不同的途径探索出梯形的面积计算方法。首先让学生说说可以把梯形转化成已经学过的什么图形?用两个完全一样的梯形拼一拼,看一看能拼成什么图形,然后学生思考讨论:想想转化的图形与原梯形有什么关系?通过学生自主探索实践活动,学生亲自参与了面积公式的推导过程,真正做到“知其然,必知其所以然”,而且思维能力、空间感受能力、动手操作能力都得到锻炼和提高。让学生主动操作、讨论,在充分感知、理解的基础上总结出梯形面积的计算方法,达成了教学目的。

二、发散验证培养解决问题的能力

在学生验证自己的想法是否正确时,鼓励学生大胆地表达自己的想法,以说促思,开启学生思维的“闸门”,引导学生说一说,议一议,互相交流,达成共识。在此基础上让学生归纳出梯形面积的计算方法。通过“拼、剪、说”的活动过程,让学生在活动中发散,在活动中发展,学得主动、扎实,更重要的是培养了学生求异思维、创造能力和解决实际问题的能力。在本课教学中,我比较注重培养学生的推理、操作探究及自主学习的能力。学生在拼一拼、剪一剪以及推理归纳的学习过程中,多种感观参与学习,既理解、掌握了梯形的有关知识,同时又培养了学生获取知识的能力。反思整个课堂教学过程,还是存在着一些问题。首先缺少学生之间的互动。数学课是数学活动的教学。这个活动不仅仅表现在学生的动手操作上,更重要的还应该表现在师生之间、学生之间的多向互动上。反思本课的教学,在学生向全班汇报了转化过程及计算方法后,急于展示自己学习成果的同学与老师展开了一对一的交流,老师忽视了对其他学生的关注。这样不利于培养了学生与学生之间提问题的能力与意识,不利于形成了生生交流的良好的课堂学习氛围,再有这节课在把梯形转化成各种三角形、平行四边形方法很多,学生的很多想法出乎我的预设,问题就是在黑板上展示多种方案中,从原先的设计中,是将重点放在“用两个完全一样的梯形拼成一个平行四边形”的方案上,并让学生多多互动交流;然而,从试教的实际效果上看,学生还是最喜欢的并不是这种方案。那么,到底将学生全员参与的活动安排在哪里呢?

我觉得课堂中反问和追问的艺术很值得研究,从教学语言可以窥出一个教师调控课堂有效展开的功力,然而,我却发现现在的我却在教学语言上显得贫瘠繁琐,尤其是这些空间图形的课堂。教学活动是否有效展开往往会成为评定一堂课是否精彩的重要筹码。纵观整堂课,我一直在思考:如何才能让活动探究得更加有效?活动的时间如何控制?这些还是我要亟待改造的地方。

梯形面积的计算教学设计(2)

教学目的:

1、使学生在理解的基础上掌握梯形面积的计算公式,能够正确的计算梯形的面积,数学教案-梯形面积计算。

2、使学生通过操作和对图形的观察、比较,发展学生的空间观念,使学生进一步认识转化的思考方法在研究梯形面积时的运用,进一步培养学生分析、综合、抽象、概括和运用转化的方法解决实际问题的能力。

教学重点、难点:

理解梯形面积计算公式的推导,并能应用公式正确的进行计算。

教具准备:

课件。

教学过程:

(一)复习旧知,做好铺垫。

1、指名让学生说说平行四边形和三角形的面积公式,(课件出示公式)并讲讲怎样推导三角形的面积公式的。

2、练习(出示)

口答下面各图形的面积。(单位:厘米)

(二)创设情景,提出问题

师:前不久,我们学校开展“植树护绿”活动,四年级同学要在劳动实践基地的一块空地里种桃树,你们看看这块地的形状近似于那种平面图形呢?(课件显示图)

师:谁能指出这个梯形的上底、下底和高各是多少?(指名回答)

师:如果每棵桔树占地4平方米,那么这块地里能种多少棵桔树呢?(让学生思考一下)你认为应该先求什么?(指名说说,引入新课。)

(三)小组学习,解决问题。

师:梯形面积怎么计算呢?它是不是也有公式呢?下面就请同学们小组合作,想办法推导出梯形面积公式,看一下合作要求:(课件出示)

合作要求:

(1)想一想:我们已经学过哪几种图形的面积公式?

(2)试一试:把梯形转化成已经学过的图形。(任选一种)

(3)比一比:转化成的图形的各部分跟梯形的各部分有什么关系?

(4)写一写:把梯形面积公式的推导过程写下来。学生分组讨论。

全班交流时,教师根据学生说的方法用课件演示转化及推导过程。

教师板书:梯形的面积=(上底+下底)×高÷2,并让学生讲讲为什么要“÷2”。)

师:如果用s表示梯形的面积,a表示梯形的上底,b表示梯形的下底,h表示梯形的高,梯形的面积计算公式用字母该怎样表示呢?(学生回答,教师板书:S=(a+b)h÷2)

师:梯形的面积公式推导出来了,我们就可以帮助四年级同学解决问题了。

课件出示:四年级同学要在一块梯形地里种树,如图,如果每棵树占地4平方米,那么这块地里能种多少棵树?

让学生独立计算,在集体订正。

师:同学们的表现都非常出色,你们帮助四年级同学解决了这个难题,我代表他们感谢你们。

(四)应用拓展,巩固知识。

师:下面我们来做练习吧。

1、一☆练习

a.课件出示:P75例1,指名读题,教师出示渠道模型说明“横截面”的意思,再由学生解答,完成后集体订正。

b.课件出示:P75做一做,由学生独立完成,集体订正。

c.课件出示:判断

1)两个梯形能拼成一个平行四边形。( )

2)平行四边形的面积是梯形面积的2倍。( )

让学生独立判断,并说明理由。

2、二☆练习

a.课件出示:

一个梯形的上底是9厘米,比下底短3厘米,高是1分米,它的面积是多少?小组计算,集体交流。

b.课件出示:

我们经常见到圆木,钢管等堆成如图的形状,通常用下面的算法求总根数:

(顶层根数+底层根数)×层数÷2

想一想是什么道理,并算出图中圆木的总根数。

3、三☆练习

课件出示:用篱笆围成一块养鸡场(如图),一边靠墙,篱笆总长65米,求养鸡场的面积。

学生独立解答,再交流。

(五)小结全课,结束教学

让学生讲讲这节课的收获,并布置作业。

有时间的话做“思考”

在下图的梯形中,剪下一个最大的三角形,剩下的是什么图形?剩下的图形的面积是多少平方厘米?

梯形面积的计算教学设计(3)

教学目的:通过练习,使学生进一步熟悉平行四边形、三角形、梯形面积的计算公式,提高计算面积的熟练程度。

教具准备:将复习题中的平行四边形、三角形、梯形画在小黑板上。用厚纸做一个平行四边形、两个完全一样的三角形和两个完全相同的梯形。

教学过程:

一、复习这个平行四边形、三角形、梯形面积的计算公式。

出示下列图形:

问:这3个图形分别是什么形?(平行四边形、三角形和梯形)

平行四边形的面积怎样计算?公式是什么?(学生回答后,教师板书:S=ah)

平行四边形的面积计算公式是怎样推导出来的?(教师出示一个平行四边形,让一学生说推导过程,教师边听边演示)

三角形的面积怎样计算的?公式是什么?(学生回答后,教师板书:S=ah÷2)

为什么要除以2?(学生回答,教师出示两个完全相同的三角形,演示用两个三角形拼摆一个平行四边形的过程)

梯形的面积是怎样计算的?公式是什么?(学生回答后,教师板书:S=(a+b)h÷2)

梯形的面积计算公式是怎样推导出来的?(学生回答,教师演示用两个完全相同的梯形拼摆一个平行四边形的过程。)

量出求这3个图形面积所需要的线段的长度。(让学生到黑板前量一量,并标在图上。让每个学生在自己的练习本上计算出这3个图形的面积,算完后,集体核对答案)

二、做练习十九中的题目。

1、第12题,先让学生说一说题中的图形各是什么形,再让学生独立计算。教师注意巡视,了解学生做的情况,核对时,进行有针对性的讲解。

2、第13题和第15题,让学生独立计算,做完后集体订正。

3、第18题,学生做完后,可以提问:在梯形中剪下一个最大的三角形,你是怎样剪的?

这个最大的三角形是唯一的吗?为什么?(不是唯一的,因为以梯形的下底为三角形的底,顶点在梯形的上底上的三角形有无数个,它们的面积是相等的。)

4、练习十九后面的思考题,学生自己试做。教师提示:这道题可以用梯形面积减去以4厘米为底,以12厘米为高的三角形的面积来计算;也可以用含有未知数X的等式来计算。

三、作业。

练习十九第11题和第14题。

梯形面积的计算教学设计(4)

教学内容:

九年义务教育六年小学制数学第九册第74—75页。

教学目标:

1、在理解的基础上掌握梯形面积的计算方法,能正确地计算梯形的面积。

2、通过操作、观察、比较,发展学生的空间观念,培养学生分析、综合、抽象、概括和运用转化的方法解决实际问题的能力。

3、渗透旋转和平移的思想,充分发挥学生的主观能动性,启发学生探索合作,让学生在实验中感受数学知识的内在美,体验创新的乐趣。

教学重点:

理解并掌握梯形面积公式的推导,会计算梯形的面积。

教学难点:

理解梯形面积公式的推导过程。

教具准备:

两个完全一样的梯形若干个。

学具准备:

各小组准备两个完全一样的梯形一对。

教学过程

一、复习导入:

1.cai出示已学过的平面图形,说出它们的面积公式并计算出它们的面积。

(学生回答,cai依次出现相应图形面积的计算公式)

提问:三角形的面积公式为什么是用底×高÷2?

2.教师设疑:cai出示一个梯形,想一想你能仿照求三角形面积的方法,把梯形也转化成已学过的图形,计算出它的面积吗?

二、教学新课:

(一)、引入课题:那我们也用两个完全一样的梯形来做实验,共同研究“梯形面积的计算” 。(板书课题:梯形面积的计算)

(二)、实验探究:

1.猜一猜:① 两个完全一样的梯形可能拼成什么图形?

② 梯形的面积会跟梯形的什么有关呢?

2.小组合作实验,推导梯形面积的计算公式:

(1)教师谈话:利用手里的学具(标出上底、下底和高),仿照求三角形面积的方法试着推导出梯形面积的计算公式。

(2)思考:

①两个完全一样的梯形可以拼成已学过的什么图形?怎么拼?

② 拼成的这个图形的面积跟梯形的面积有什么关系?

③ 你觉得梯形的面积可以怎样计算?

(3)小组合作,学生实验。

3. 实验汇报。

4. 引导学生看图并提问:这个梯形的面积可以怎样计算?

现在给你一个任意梯形,你都能求出它的面积吗?怎么求?为什么?

5.概括总结、归纳公式。

教师提问:

①为什么计算梯形的面积要用(上底+下底)×高÷2?

②要求梯形的面积必须知道哪些条件?

三、练习:

(一).基本练习:

(二)解决问题:

四、小结:

通过这节课的学习你有哪些收获?你能详细的说说梯形面积的推导过程吗?

五、巩固提高。

板书设计:

梯形面积的计算

梯形的面积=(上底+下底)×高÷2 )

s = (a+b)×h÷2

教学反思:

新的数学课程标准指出:教师不只做教材忠实的实施者,而应该做教材的开发者和建设者,教材的教育价值和智力价值能否得到充分发挥,关键在与教师对教材的把握。《梯形面积的计算》一课,是在学生掌握了平行四边形和三角形面积计算的基础上进行教学的。学生已掌握了一定的学习方法,形成了一定的推理能力。为了充分利用原有的知识,探索、验证,从而获得新知,给每个学生提供思考、表现、创造的机会,使他们成为知识的发现者、创造者,培养学生自我探究和实践能力。

一、动手操作 培养探索能力

在推导梯形面积计算公式时,安排了两次操作活动。首先让学生用两个完全一样的梯形拼一拼,看一看能拼成什么图形,然后引导学生思考讨论:梯形与你拼成的平行四边形有什么联系?引导学生发现每个梯形的面积是拼成平行四边形面积的一半,然后再让学生用一个梯形,想办法把它转化成已学过的图形来推导梯形的面积公式。通过两次实践活动,学生亲自参与了面积公式的推导过程,真正做到“知其然,必知其所以然”,而且思维能力、空间感受能力、动手操作能力都得到锻炼和提高。

二、发散验证 培养解决问题的能力

在学生验证自己的想法是否正确时,鼓励学生大胆地表达自己的想法,以说促思,开启学生思维的“闸门”,对学生的五花八门的想法不急于评价,应不失时机地引导学生说一说,议一议,互相交流,达成共识。在此基础上让学生理一理,归纳出梯形面积的计算方法。通过“拼、移”的活动过程,让学生在活动中发散,在活动中发展,学得主动、扎实,更重要的是培养了学生求异思维、创造能力和解决实际问题的能力。

在本课教学中,我比较注重培养学生的推理、操作探究及自主学习的能力。学生在动手操作以及推理归纳的学习过程中,多种感观参与学习,既理解、掌握了梯形的有关知识,同时又培养了学生获取知识的能力。

但也存在一些不足之处,例如:在推导验证的过程中,学生表达得不够清晰,对于推导的过程理解得还不够透彻。如果让他们充分地操作体会,时间又不允许。如何解决这样的矛盾,也是我需要反思的问题。

梯形面积的计算教学设计(5)

教学目标

1、理解、掌握梯形面积的计算公式,并能运用公式正确计算梯形的面积。

2、发展学生的空间观念。培养抽象、概括和解决实际问题的能力。

3、掌握转化的思想和方法,进一步明白事物之间是相互联系的,可以相互转化的。

重点难点

重点:掌握梯形面积的计算公式。

难点:理解梯形面积公式的推导过程。

教具学具

多媒体课件。每人准备两个完全一样的梯形。(有等腰、直角、一般梯形)

教学过程

一、导入

1、师:同学们,之前我们学过的平行四边形和三角形的面积是如何计算的?

生:平行四边形的面积=底×高,也就是S=ah。

三角形的面积=底×高÷2,也就是S=ah÷2。

2、指名让学生说出平行四边形、三角形的面积公式的推导过程。

3、师:根据前面的学习,我们把要研究的图形转化成已学过的平面图形,就能找到所求图形面积的计算方法,今天我们要研究的梯形的面积,可以怎样转化呢?下面我们就来实践操作一下吧。

二、探究

1、师:请同学们拿出准备好的梯形,这些梯形有什么特点?

生:各种梯形,每种两个。

提出要求:(1)选择自己喜欢的梯形把它拼成我们学过的图形。

(2)想一想,拼成怎样的图形,是利用怎样的方法拼成的?

(3)它们的高与梯形的高有怎样的关系?它们的底与梯形的上、下底有怎样的关系?它们的面积与梯形的面积有着怎样的联系?

2、学生先独立思考,后小组交流。

教师巡视指导,引导学生把转化前后的图形各部分之间的关系找准。

3、师:(出示课件)现在画面展示的是两个完全相同的梯形重叠在一起,哪个小组能说一说刚才你们将其拼成了什么图形?是怎样拼的?

各小组推选1人向全班汇报过程与结果。(教师逐一配以课件演示)

三、汇报

四、总结

师:学完这节课,你收获了什么呢?跟大家说说吧!

学生讨论。

老师小结:通过本节课的学习,同学们经历了梯形的转化过程,推导出梯形的面积计算公式,能灵活运用知识解决问题。

梯形面积的计算教学设计(6)

教学目的:

1、掌握梯形的面积计算公式,能正确地计算梯形的面积。

2、通过操作和对图形的观察、比较,发展学生的空间观念,使学生进一步认识转化的思考方法在研究梯形面积时的运用,进一步培养学生的分析、综合、抽象、概括和运用转化的方法解决实际问题的能力。

教学重点:

正确地进行梯形面积的计算。

教学难点:

梯形面积公式的推导。

教学准备:

投影、小黑板、若干个梯形图片(其中有两个完全一样的。

教学过程:

一、导入新课

1、提问:我们学习过哪几种平面图形的面积计算?计算公式分别是什么?

2、你能说出平行四边形的面积公式是如何推导的吗?三角形的面积公式呢?

3、创设情境:

投影显示:

启发谈话:同学们能依照平行四边形和三角形面积的方法,把梯形也转化成已学过的图形,计算出它的面积吗?(板书课题)

二、新课展开

1、操作探索

⑴拼一拼,让学生拿出自己准备的两个完全一样的梯形动手拼一拼。

提问:你拼成了什么图形,怎样拼的?演示一遍。

⑵看一看,观察拼成的平行四边形。

提问:你发现拼成的平行四边形和梯形之间的关系了吗?

出示小黑板:

拼成的平行四边形的底等于(),平行四边形的高等于(),每个梯形的面积等于拼成的平行四边形面积的()。

⑶想一想:梯形的面积怎样计算?

学生讨论,指名回答,师板书。

梯形的面积=(上底+下底)×高÷2

师:(上底+下底)表示什么?为什么要除以2?

⑷做一做:计算“前面出示的梯形”的面积。

2、扩散思维

师:如果我们手中只有一个梯形,你们能不能自己动脑想出别的计算方法推导它的公式?下面小组讨论。分组汇报:

生1:做对角线,把梯形分割成两个三角形,如下图⑴:

生2:从上底的一个顶点做另一腰的平行线,把梯形分割成一个平行四边形和一个三角形。如上图⑵。

生3:从上底的两个顶点作下底的垂线,把梯形分割成一个长方形和两个三角形,如上图⑶。

师:同学们真聪明,想出了好多种方法,推导出了梯形的面积计算公式,但不管采取何种方法都可以得出梯形的面积是“上底与下底的和乘以高再除以2。”

3、抽象概括

师:如果用s表示梯形的面积,用a、b和h分别表示梯形的上、下底和高,那么梯形的面积你会表示吗?

生:s=(a+b)h÷2

4、反馈练习

完成课本p81做一做(一人板演)

三、应用深化

出示例子:一条新挖的渠道,横截面是梯形,渠口宽2.8米,渠底宽1.4米,渠深1.2米,它的横截面的面积是多少平方米?

解释:举例说明“横截面”的含义。学生尝试计算:

(2.8+1.4)×1.2÷2

=4.2×1.2÷2

=5.04÷2

=2.52(平方米)

答:它的横截面的面积是2.52平方米。

2、反馈练习:完成p82第1题

四、巩固练习:p82第2题

五、全课小结

六、作业:p82第3、4题

教学后记:

实践操作是儿童智力活动的源泉,在教学中我以实践操作为切入点,使抽象的概念具体化,积极推动学生的思维发展。让学生拼一拼、看一看、想一想、做一做,获得感性材料,为概括出新概念、总结新方法打下基础。

在教学是我注重了对学生的创新精神和实践能力的培养,真正体现学生是学习的主人。

梯形面积的计算教学设计(7)

教学目标:

1、引导学生主动参与探索,发现并掌握梯形的面积计算方法,能灵活运用梯形面积计算公式解决相关的数学问题。

2、结合学习过程,培养学生观察、操作、比较、推理等逻辑思维能力和初步的假设、试验和验证等科学探究能力。

3、进一步培养学生的空间观念,不断发展学生的空间想象力,培养学生的实践能力和创新意识,体验数学再创造的乐趣,并使不同的学生获得个性化的发展。

教学重、难点:运用转化推导梯形面积的计算公式。

教具、学具准备:一般梯形两个,两个完全一样的梯形,剪刀等。

教学过程:

一、自由操作联想,作好新课孕伏。

师:对于梯形,你们已经知道了什么?(可让学生自由发表)利用你手中的梯形,动手折折、剪剪、拼拼,还能发现些什么?(学生独立操作,在此基础上,在同桌或小组内交流自己的发现)

生1:我发现任何梯形都可以分成两个三角形;

生2:我们发现两个完全一样的`梯形可以象三角形那样,通过重叠、旋转、平移,转化成一个平行四边形的;

生3:我们发现将一个梯形沿着它的两条高剪开,分成了两个三角形和一个长方形;

生4:我们发现梯形可分成一个三角形和一个平行四边形;

生5:还可以将梯形先剪下一个小三角形,再将剪下的小三角形通过旋转、平移的方法和剩下的图形拼成一个大三角形。

生6:我们认为还可以将梯形从中间剪开,分成两个梯形,然后将其中的一个梯形通过旋转、平移,和另一个梯形拼成一个平行四边形。(图略)

生7:在梯形的下面剪去两个小直角三角形,拼到上面,可以拼成一个长方形;

生8:将梯形上下对折,沿折痕剪开后所得的两个小梯形也能拼成一个平行四边形

……

师:善于观察、勇于实践,才给同学们带来如此丰富的发现,真了不得!

[点评:引导自由操作,有利于在宽松环境中激活原有数学经验,为随后有目的的尝试、实验和验证做好铺垫。]

二、“假设——验证——交流”,体验数学再创造乐趣

1、假设

师:请大家再想一想,这些方法都有一个共同之处,你看出来了吗?

生:都是将梯形转化成了我们已经学过的图形。

师:同学们将转化后的新的图形与原来的梯形进行比较,看看它们的面积有什么关系?为什么?你能推导出梯形面积的计算公式吗?谈谈你的来推导?

生2:可不可以象三角形那样,将两个完全一样的梯形拼成一个大平行四边形,再进行推导?

……

[点评:交流对问题的初步设想是准确把握学生已有数学现实的关键,这对教师引导学生进行随后的学习起着关键作用]

2、验证:

师:作出的假设是否正确,关键在于能不能经得住实验的验证。请大家借助手头的材料,小组互相合作,大胆试试看,并将结果记录下来。

(学生独立或合作尝试转化,教师深入倾听,对有困难学生进行必要的提示和启发。)

[点评:对数学材料实现“再创造”,不仅需要学生的独立思考,同时也需要组员间的相互启发和教师的及时点拨与引导。]

3、汇报、交流、:

师:不少同学已经成功对自己的假设进行了验证,请哪个小组先来展示你们验证的结果和方法?(学生借助实物投影展示各自的方法和结论)

生1:我们是将两个完全一样的梯形转化为一个平行四边形的,这个平行四边形的底是梯形上下底的和,高就是梯形的高,而梯形的面积只有平行四边形面积的一半。

因为:平行四边形的面积=底×高,所以:梯形的面积=(上底+下底)×高÷2。

(掌声)教师表扬。

生2:我们组将梯形分成了两个三角形。因为:小三角形的面积=上底×高÷2,大三角形的面积=下底×高÷2,所以:梯形的面积=上底×高÷2+下底×高÷2 = (上底+下底)×高÷2。

生3:我们小组认为:将梯形上下对折,沿折痕剪开后所得的两个小梯形也能拼成一个平行四边形

这个梯形的底就是梯形的上下底的和,高就是梯形的高的一半,因为:平行四边形的面积=底×高,所以:梯形的面积=(上底+下底)×(高÷2)。[教学,尽在天下教!]

生4:我们小组沿着梯形的两条高,将梯形分成了一个长方形和两个三角形,长方形的面积可以求出,但三角形的面积无法求出,因为三角形的底不知道。

生5:我认为可以求出,但不知是否正确?

师:说说看,说错了也没问题。

生5继续:单独求其中一个三角形的面积比较困难,能不能将这两个三角形合并成一个大的三角形呢?因为它们都是直角三角形,而且高又相等。

师:你很爱动脑筋,想法也很好,请同学们按照这位同学的思路去剪一剪,拼一拼,看看三角形的底与梯形有没有关系?

生6:我发现了,这个三角形的底应该等于梯形的下底与上底的差。这样,长方形的面积为“上底×高”,两个三角形的面积为“(下底-上底)×高÷2”,合起来再化简即得“梯形的面积﹦(上底+下底)×高÷2”。

生7:我们小组将梯形右下方的小三角形剪下,再翻转上去,拼成一个平行四边形。平行四边形的底相当于梯形上下底和的一半,平行四边形的高相当于梯形的高。所以“梯形的面积=(上底+下底)÷2×高”。

……

师:现在我们来一下,通过我们刚才的观察,比较,那么在这些方法中,你最欣赏师:会用字母表示吗?

生:S=(a+b)h÷2

师:说一说各字母的意义。

[点评:通过动手操作,大胆实践,探索出多种方法来推导梯形面积的计算公式,引导学生及时交流,展示个性化的研究思路与成果,整个引导过程都充分发挥了学生的主体作用,使学生真正经历了“操作、观察、”的过程,经历了一个数学再创造的过程,既品尝了成功的体验,又激发了学生的实践欲望和创新能力。]

三、在实践中拓展、延伸

1、生尝试练习,帮助理解“横截面”的意义。

2、说一说计算梯形的面积应注意什么?

3、想一想,算一算:

出示圆木图,求圆木的根树。

4、计算:1+2+3+4+5+6+7+8+9= (想一想,怎样算比较简便)

[点评:有层次、有坡度、有趣味的练习,既能巩固所学的新知,又有利于学生灵活运用所学知识解决生活中的数学问题,使学生感到数学是有用的,为培养学生的应用意识起到了较好的促进作用。]

四、全课:

1、通过这节课的学习,每个同学都有很大收获,谈谈你的收获。

2、还有什么不懂的吗?

五、作业:(略)

教后反思:

探索新型情感性课堂教学,还学生的主体地位。

新的《数学课程标准》多处强调:“学生是数学学习的主人”,“数学教学,要紧密联系学生的生活环境,从学生的生活经验和已有知识出发,创设有助于学生自主学习、合作交流的情境,使学生通过观察、操作、归纳、类比、猜测、交流、反思等活动,获得基本的数学知识和技能,进一步发展思维能力,激发学生的学习兴趣,增强学生学好数学的信心。” 本课教学中尊重每一位学生,允许不同的学生从不同的角度认识问题,采用不同的方式表达自己的想法,用不同的知识和方法解决问题。《梯形面积的计算》一个,从课开始的自由操作联想,到公式推导的全过程,到公式的应用,自始至终都能将学生放到主体的地位上。通过学生的实验、操作、交流,让学生构建梯形与长方形、平行四边形、三角形之间的联系,从而正确的推导出梯形面积的计算公式,并灵活的应用于生活实际。

梯形面积的计算教学设计(8)

五年级数学《梯形面积的计算》第三课时教学设计

教学内容:混合练习(课本第84-85页,练习十九第11-18题)

教学目标:

⒈通过混合练习,理清多边形的面积计算公式,能够熟练地运用公式求面积和解答有关的应用问题。

⒉在复习与梳理中学会联系,进而提高综合分析解题能力。

教学过程:

一、复习梳理

⒈公式的复习

我们已经学过各种多边形的面积计算公式,谁来说说这些公式各是什么?它们是怎样推导出来的?

师生共同进行:边回顾、边画图、边讨论;

⒉教师指出:多边形的面积公式是互相联系,彼此相关的,我们必须以长方形的面积公式为基础,以平行四边形的面积为重点,清楚地把握它们之间的同在联系和区别。

二、练习巩固

⒈独立完成练习十九的第12题--看谁正确率最高!

要求:开列已知条件;写出相应的`面积公式;列式解答。

⒉完成第14题

先议:⑴左图是什么图形?求面积需要哪些条件?怎么取得?⑵右图是什么图形?为什么?求它的面积需要量几个量?把它们分别量出来。

⒊完成第13和15题

在求得面积之后,怎样选择算法求解。

三、综合提高:

讨论:

⑴平行四边形的底扩大3倍,高不变,面积怎样变化?如果高也扩大2倍呢?

⑵三角形的底不变,高缩小2倍,面积怎样变化?如果高缩小2倍,底扩大2倍,情况又怎样呢?

⑶一个三角形与一个平行四边形等底等面积,那么三角形底边上的高一定是这个平行四边形高的2倍,为什么?

四、总结:

多边形的面积计算,关键是公式的理解与熟练,同时在选用公式时,尤其注意哪些图形求面积时要÷2。

五、板书设计:

梯形面积的计算

六、教后感:

梯形面积的计算教学设计(9)

《梯形面积计算公式的推导》最新教学设计

作为一位不辞辛劳的人民教师,总不可避免地需要编写教学设计,借助教学设计可以提高教学效率和教学质量。那么什么样的教学设计才是好的呢?以下是小编收集整理的《梯形面积计算公式的推导》最新教学设计,欢迎阅读与收藏。

一、 教学目标:

1、 运用“转化”的方法引导学生学习推导梯形面积的计算公式。

2、 通过动手操作培养学生的动手实践能力,激发学习兴趣,培养合作意识。

二、 教学重点:

引导学生运用“转化”的方法推导梯形面积的计算公式。

三、 教学难点:

1、 运用“转化”的方法推导梯形面积的计算公式。

2、 对公式中梯形面积=(上底+下底)×高÷2中“÷2”的理解。

四、 教具:

课件、两个完全一样的普通梯形、两组两个完全一样的直角梯形、普通梯形一个。

五、 学具:

每小组都有两个完全一样的梯形、一个普通梯形和剪刀。

六、 教学过程:

(一)复习:

1、复习已学的图形面积计算公式:

师述:“同学们你们都学过哪些图形的`面积,是怎样计算的?”

根据学生的回答依次板书:长方形面积=长×宽

正方形面积=边长×边长

平行四边形面积=底×高

三角形面积=底×高÷2

2、复习三角形、平行四边形面积计算公式的推导步骤:

师述“想一想你们是分几步把平行四边形、三角形面积的计算公式推导出来的?”

根据学生回答依次板书:步骤:1、转化

2、找关系

3、推导公式

4、所用方法

(二)新授:

1、用生活中的实际问题引出本节课的教学内容:

(1)师边出示图边叙述:“我们学校打算在操场南侧建一块绿地,算一算 这块绿地需要铺草坪多少平方米?解决这个问题的关键是什么?”

生答:“求梯形的面积”。 出示课题:梯形的面积

(2)引出转化法

师边叙述边板书:“梯形的面积对于我们来说是新知识,我们要把梯形转化成我们学过的长方形、正方形、平行四边形、三角形(板书:转化),利用旧知识解决新问题,推导出梯形面积的计算公式。(板书:计算公式的推导)”

板书为:梯形面积计算公式的推导

转化

(3)布置动手操作要求:

师述:“以组为单位按步骤利用学具一起想办法推导出梯形面积计算公式,要求合理的分工、合作,操作学具要麻利。”

2、学生分组动手操作推导出梯形面积的计算公式

(教师行间巡视和学生一起探究,对学生在探究过程中出现的问题进行指导)

可能遇到的问题:找关系

割补法中:为什么“平行四边形的高=梯形的高÷2”学生理解起来可能出现困难。

3、各小组汇报探究成果,师给予适当补充。

(1) 将两个完全一样的普通梯形转化为平行四边形

1、转化:

梯形 平行四边形

2、找关系:

平行四边形面积=2个梯形面积

底=上底+下底

高=高

3、推导公式:

平行四边形面积= 底×高

‖ ‖ ‖

2个梯形面积= (上底+下底)× 高

梯形面积= (上底+下底)× 高 ÷ 2

4、方法:

拼摆法

师问:“其他同学哪儿不懂?”

师问:“为什么要除以 2?”

(2)将两个直角梯形转化为长方形

1、 转化:

梯形 长方形

2、找关系:

长方形面积=2个梯形面积

长=上底+下底

宽=高

3、推导公式:

长方形面积= 长 ×宽

‖ ‖ ‖

2个梯形面积= (上底+下底)× 高

梯形面积= (上底+下底)× 高 ÷ 2

4、方法:

拼摆法

(3)将两个直角梯形转化为正方形

1、 转化:

梯形 正方形

2、找关系:

正方形面积=2个梯形面积

边长=上底+下底

边长=高

3、推导公式:

正方形面积=边 长× 边长

‖ ‖‖

2个梯形面积= (上底+下底)× 高

梯形面积= (上底+下底)× 高 ÷ 2

4、方法:

拼摆法

(4)将普通梯形转化为三角形

(沿一腰中点和左上角顶点之间的连线剪开,将梯形分成一个四边形和一个三角形,以一腰中点为轴顺时针转动小三角形,最后转化为三角形。)

梯形面积的计算教学设计(10)

梯形面积计算的教学设计范文

教学内容: 九年义务教育苏教版第八册P53

教学目标: 1. 使学生经历梯形面积计算方法的探索过程,感受转化的数学思想。

2. 使学生理解梯形面积的计算方法,能正确地计算梯形的面积。

3. 培养学生的观察、比较、分析以及动手操作的能力,发展学生的空间观念。

教学重点: 理解梯形面积的计算方法,正确计算梯形的面积。

教学难点: 梯形面积计算方法的推导过程。

教学准备: 多媒体课件

教学过程

一. 复习引入。

1. 同学们已经掌握了平行四边形和三角形面积的计算。现在我就想考考同学到底掌握得怎么样?谁能够快速准确地说出这些图形的面积呢?

2. 计算下面图形的面积。(单位:厘米)

3. 我们先看第一个图形,它的面积是多少?(300平方厘米)

你是怎样计算的?(20×15=300)

你的根据是什么?(平行四边形的面积=底×高)

你能说你的这个方法是怎么得出来的吗?(沿着平行四边形的一条高剪开,再把它从一边移动另一边,这样就拼成了一个长方形。)

4. 那么第二个图形的面积是多少呢?(36平方厘米)

你是怎样计算的?(12×6÷2=36)

你的根据是什么?(三角形的面积=底×高÷2)

你能说你的这个方法是怎么得出来的吗?(将一个一模一样的三角形沿一个顶点旋转180,再沿边平移上去,这样就拼成了一个平行四边形。)

5. 出示转化过程并小结:我们是把平行四边形、三角形分别转化成长方形、平行四边形这些我们已经学过的图形来计算出它们的面积的!

二. 新课传授。

(一)面积计算方法的推导过程。

1. 今天我还带来了另外一个图形,谁能告诉我这是什么图形?(出示梯形)

你怎么知道它是梯形?(只有一组对边平行)

2. 提出质疑揭示课题:今天我们就一起来研究梯形面积的计算(板书),我们是否可以仿照平行四边形和三角形的方法,把梯形也转化成已学过的图形来计算它的面积呢?请同学们拿出准备好的梯形和剪刀,看看你能不能通过剪一剪、拼一拼把梯形也转化成我们已经学过的图形呢?

3. 学生动手操作,分别展示成果。

(1)请学生说出自己的想法和拼法。(将一个一模一样的梯形沿一个顶点旋转180,再沿腰平移上去,这样就拼成了一个平行四边形。)

现在我们来看一看拼成的图形与原来的梯形有些什么样的关系?(拼成的平行四边形的底是原来梯形的上底与下底的和,高没有变,面积是梯形的两倍。)

(2)请学生说出自己的想法和拼法。(将梯形上底和下底对折,再沿折线剪开,将上面的一半沿腰上的中点旋转180,这样就拼成了一个平行四边形。)

现在我们来看一看拼成的图形与原来的梯形有些什么样的关系?(拼成的平行四边形的底是原来梯形的上底与下底的和,高是原来梯形面积的一半,面积没有变。)

(3)请学生说出自己的想法和拼法。(沿梯形一腰中点和对角顶点对折,再折线剪开,将上面的一半沿腰上的中点旋转180,这样就拼成了一个三角形。)

现在我们来看一看拼成的图形与原来的梯形有些什么样的关系?(拼成的三角形的底是原来梯形的上底与下底的和,高是没有变,面积也没有变。)

4. 我们用很多方法计算出了梯形的面积,但是在实际生活中,有许多东西象钢板等等是不能这样剪开来拼拼的,所以我们就需要知道计算梯形的.面积规律。请同学以小组的形式讨论一下,你能从你的方法中得出什么计算的规律吗?

5. 你是怎么得出这个规律的?

6. 揭示规律并板书:梯形面积=(上底+下底)×高÷2

你们能不能告诉我如果我要求一个梯形的面积要知道写什么条件呢?(上底、下底、高)

现在我用s表示梯形的面积,分别用a、b、h表示上底、下底和高,你能用这些字母表示梯形面积的计算方法吗?(s=(a+b)h÷2)

7. 经过刚才的学习,我们了解了梯形面积计算的一个方法,那么我想请同学们帮我解决这样一个问题(出示例1):一个零件,横截面是梯形。上底是14厘米,下底是26厘米,高是8厘米。它的横截面的面积是多少平方厘米?

三. 巩固练习。

1. 找出梯形的上底、下底和高并计算面积。(单位:厘米)

2. 量出自己准备的梯形的上底、下底、高,求出它的面积。

从这个梯形上剪下一个最大的三角形,怎么剪?剩下的图形面积是多少?为什么?

四、课堂总结。

1. 这节课你学到了什么?

2. 你还有什么样的问题吗?

【微语】那天我打算放弃爱她了,脑子里突然出现一句话:虽然轻言放弃不是我的性格,但是紧追不舍也不是我的作风。呵呵但是还是没有停止爱她,因为如果爱,就请深爱。

温馨提示:
本文【梯形面积的计算教学设计(合集10篇)】由作者学习工坊提供。该文观点仅代表作者本人,学分高考系信息发布平台,仅提供信息存储空间服务,若存在侵权问题,请及时联系管理员或作者进行删除。
我们采用的作品包括内容和图片部分来源于网络用户投稿,我们不确定投稿用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的权利,请联系我站将及时删除。
内容侵权、违法和不良信息举报
Copyright @ 2024 学分高考 All Rights Reserved 版权所有. 湘ICP备17021685号