教学基本
内容六年制小学数学第十一册P25—26。
教学目的和要求
1、使学生经历操作、观察、猜想、验证、交流和归纳等数学活动的过程,探索并掌握长方体和正方体的体积公式,能应用公式正确计算长方体和正方体的体积,并能解决相关的简单实际问题。
2、使学生在活动中进一步积累探索数学问题的经验,增强空间观念,发展数学思考。
3、培养学生初步的归纳推理、抽象概括的能力。
教学重点
及难点探索并掌握长方体和正方体体积的计算方法。
长方体和正方体体积公式的推导。
教学方法
及手段本课设计了一系列的问题,让学生自主探究,从中探索并掌握长方体和正方体的体积计算公式,促进学生的思维,提高学生积累探索数学问题的经验,进一步增强学生的空间观念。
学法指导
讨论交流,并认真听讲思考。
集体备课个性化修改
预习阅读书本25、26页,并初步理解解
教学环节设计
一、以旧引新
师:上节课我们认识了长方体和正方体的特征,谁能对着模型再来介绍一下?
要计量一个物体的体积,就要看这个物体含有多少个体积单位.今天我们来学习怎样计算长方体和正方体的体积.(板书课题)
二、探究新知
1、通过操作、观察、猜想来认识长方体的体积与长、宽、高的关系。
师:用1立方厘米的小正方体摆成长方体,要求四人小组内每人摆出的长方体各不相同。
师:将摆出的长方体放在桌上,并编号。
请同学们说一说这些长方体的长、宽、高各是多少,你是怎样看出来的,将这些长方体的长、宽、高依次记录在表格中。
引导学生依次去数每个长方体中包含的小长方体的个数,并记录在表格中。
问?观察表格中的这些长方体的长、宽、高以及它们的体积,再联系刚才数出它们体积的过程,你发现了什么?
师:通过刚才的操作和讨论,我们想一想,长方体的体积是不是它的长、宽、高的乘积呢?
依次出示例10中的三个长方体,问:如果用1立方厘米的小正方体摆出这三个长方体,各需要多少个小正方体?
师:摆出的每个长方体的长、宽、高分别是多少?体积是多少立方厘米?这个结果与你操作前的想法一样吗?
2、验证、交流后归纳出长方体的体积计算公式及字母公式。
通过刚才操作过程中的发现,同学们能说一说长方体的体积与它的长、宽、高有什么关系吗?怎样求长方体的体积?
通过交流得出公式:长方体的体积=长×宽×高。
问:如果用V表示长方体的体积用a、b、h分别表示长方体长、宽、高(出示如教材所示的长方体的直观图),你能用字母表示长方体的体积公式吗?
交流得出:V=abh.
3、根据正方体与长方体之间的联系,得出正方体的体积计算公式。
师:正方体的棱长有什么特点?你能直接写出正方体的体积公式吗?
交流得出:正方体的体积=棱长×棱长×棱长。
重点理解的含义,进一步明确的读法、写法。
做“试一试”。
作业做“练一练”。
做练习六第2题
课堂作业:做练习六第1、2题
板书设计
执行情况与课后小结
一、教学目的:
1.通过学生的自主发现掌握长方体的特征,会辨认长方体。
2.培养学生动手操作的能力,观察能力和抽象、概括能力。
3.精心组织学生活动,激发学生学数学的兴趣,体现数学充满着探索与创新,感受数学
的严谨性以及数学结论的确定性。
二、教学重点:
掌握长方体的特征。
三、教学难点:
建立立体图形的空间观念。
四、教具准备:
教具:长方体框架、长方体、正方体、圆柱、圆台、长方台等;投影片;电脑动画软件。
学具:长方体和正方体的纸盒。
五、教学过程:
1.分类、操作、引出新知
(1)教师出示一幅图:你能将它们根据一定标准分类吗?
(2)师生共同概括:像粉笔盒等长方体和正方体,和排球、土豆等都占据一定空间把它
们称为立体图形。
请同学们说说在日常生活中哪些物体的形状是长方体。
(板书:长方体的认识)
长方体我们从哪些方面来认识呢?
(3)拿出一块橡皮,横切一刀,露出一个面,让学生触摸,并说说感觉,教师明确这部
分叫面。再切一刀,再让学生触摸两面相交的线,说出感觉,明确这在立体图形中叫做棱。
什么叫棱?
将橡皮的一个面扣放在桌面上,与两个面垂直再切一刀,触摸三条棱相交的点,说出感
受,明确它叫顶点。什么叫顶点?
(4)找实物指出它的长、宽、高。
今天,我们就从面、棱、顶点三个方面来学习长方体的认识。
2.实践操作,探究新知
(1)认识长方体的特征。
那么长方体的特征是什么?请同学们自己数一数、量一量、比——比后,完成表格。
(提示:放手让学生运用各种感官和学习用具独立探究、自主发现面、棱、顶点的知识。)
(2)教师巡回指导,指导要点如下:
①数面、棱、顶点时,如何数比较科学。
②采用多种学习方法。
(提示:如测量、计算、比较及用身体某个部分去接触面、棱、顶点等。)
③独立填写“我的发现”一表。
面
棱长
顶点
(学生在学习时,采用动手实践,自主探索,多种学习方法,既学到了知识又培养了能
力。)
汇报:师生共同归纳。
(除了各部分的数量外,还要引导学生认识。)
a.按棱的长度可分为3组,每组内4条棱平等且长度相等;
b.相交于一个顶点的棱有3条,长度不一定相等;
c.相交于一个顶点的3条棱的长度分别叫长方体的长、宽、高;
d.长方体的形状、大小是由长方体的长、宽、高决定的;
e.面的特殊情况。
完成做一做,反馈订正。
小结。
五、课堂练习:
基础练习
拿一个火柴盒量一量,它的长、宽、高各是多少?然后说一说每个面的长和宽是多少?
计算棱长总和。
综合练习
(1)长方体的六个面一定是长方形。 ( )
(2)长方体的三条棱长的长度分别叫做长方体的长、宽、高。 ( )
(3)有六个面、十二条棱、八个顶点的形体一定是长方形。( )
(4)长方形纸是长方形不是长方体。 ( )
(5)有6个面,且6个面都是长方形,它一定是长方体。 ( )
实践与应用
(1)一个长方体的棱长总和是96厘米,已知长是8厘米,高是7厘米,宽是多少厘米?
(2)用一根168厘米的铁丝,焊接成一个长方体教具,长20厘米,宽12厘米,它的高是多
少厘米?
(3)用一根长100厘米的铁丝,做成一个长·9厘米,宽6厘米,高4厘米的长方体后,还
剩多少厘米?
五年级数学下册长方体正方体的体积计算方法优秀教学设计
教学内容:
推导长正方体的体积计算方法
教学目标:
1、使学生理解长方体和正方体体积公式的推导,能运用公式进行计算。
2、培养学生空间和空间想象能力。
教学重点:
长正方体体积公式的推导。
教学难点:运用公式计算。
教学设计:
一、出示课题,学习目标
理解长方体和正方体体积公式的推导,能运用公式进行计算。
二、出示自学指导
认真看课本观察:每排个数、排数、层数与体积有什么关系?如何计算长方体的体积?
三、学生看书,自学
四、效果检测
如何计算长方体的'体积?
板书:长方体体积=长宽高
字母公式:V=abh
五、练习
1、一个长方体,长7厘米,宽4厘米,高3厘米,它的面积是多少?
根据长方体和正方体的关系,你能想出正方体的体积怎样计算吗?
正方体体积=棱长棱长棱长 V=aaa=a3 读作a的立方
3、一块正方体的石料,棱长是6分米,这块石料的体积是多少立方分米?
请同学们摆一个体积是24立方厘米的长方体,摆后说一说长、宽、高各是几厘米?
长方体体积=长宽高 提问:长方体的长、宽、高不同,体积相同这是为什么?
六、小结:
怎样计算长、正方体的体积?计算长方体和正方体的体积有没有其他的方法?这个问题我们下节课研究。
七、作业
课后反思
五年级数学《长方体和正方体的体积计算》教学设计
教学要求
使学生理解长方体和正方体体积的计算公式,初步学会计算长方体和正方体的体积,培养学生实际操作能力,同时发展他们的空间观念。
教学重点
长方体、正方体体积公式的推导。
教学用具
教师准备:一大块橡皮泥;1立方厘米的正方体木块24块;投影仪。学生准备:1立方厘米的正方体12个
教学过程
一、创设情境
填空:1、叫做物体的体积。
2、常用的体积单位有:、。
3、计量一个物体的体积,要看这个物体含有多少个。
师:我们已经知道计量一个物体的体积,要看这个物体含有多少个体积单位,那么怎样计算任意一个长方体、正方体的体积?这节课我们就来学习长方体、正方体体积的计算方法。(板书课题)
二、实践探索
1.小组学习------长方体体积的计算。
出示:一块长4厘米、宽3厘米、高2厘米的长方体橡皮泥,用刀将它切成一些棱长1厘米的小正方体。
提问:请你数一数,它的体积是多少?有许多物体不能切开,怎样计算它的体积?
实验:师生都拿出准备好的12个1立方厘米的小正方块,按第32页的第(1)题摆好。
观察结果:(1)摆成了一个什么?
(2)它的长、宽、高各是多少?
板书:长方体:长、宽、高(单位:厘米)
431
含体积单位数:4×3×1=12(个)
体积:4×3×1=12(立方厘米)
(3)它含有多少个1立方厘米?
(4)它的体积是多少?
同桌的同学可将你们的小正方体合起来,照上面的方法一起摆2层,再看:
(1)摆成了一个什么?
(2)它的长、宽、高各是多少?
(3)它含有多少个1立方厘米?
(4)它的体积是多少?(同上板书)
通过上面的实验,你发现了什么?(可让学生分小组讨论)
结论:长方体的体积=长×宽×高。
用字母表示:V=a×b×h=abh
应用:出示例1,让学生独立解答。
2.小组学习--正方体体积的计算。
思考并回答:长方体和正方体有什么关系?正方体的.体积该怎样计算呢?
结论:正方体的体积=棱长×棱长×棱长
用字母表示为:V=a3
说明:a×a×a可以写成a3,读作:a的立方。
应用:出示例2,让学生独立做后订正。
三、课堂实践
1.做第34页的“做一做”的第1题。
(1)先让学生标出每个长方体的长、宽、高。
(2)再根据公式算出它们各自的体积。
(3)集体订正。
2、做第33页的“做一做”的第2题。
3、做练习七的第4、6题。
四、课堂小结
五、课后实践
做练习七的第5、7题。
长方体和正方体的体积计算教学设计
教学要求 使学生理解长方体和正方体体积的计算公式,初步学会计算长方体和正方体的体积,培养学生实际操作能力,同时发展他们的空间观念。
教学重点 长方体、正方体体积公式的推导。
教学用具教师准备:一大块橡皮泥;1立方厘米的正方体木块24块;投影仪。学生准备:1立方厘米的正方体12个
教学过程
一、创设情境
填空:1、叫做物体的体积。2、常用的体积单位有:、。3、计量一个物体的体积,要看这个物体含有多少个。
师:我们已经知道计量一个物体的体积,要看这个物体含有多少个体积单位,那么怎样计算任意一个长方体、正方体的体积?这节课我们就来学习长方体、正方体体积的计算方法。(板书课题)
二、实践探索
1.小组学习------长方体体积的`计算。
出示:一块长4厘米、宽3厘米、高2厘米的长方体橡皮泥,用刀将它切成一些棱长1厘米的小正方体。
提问:请你数一数,它的体积是多少?有许多物体不能切开,怎样计算它的体积?
实验:师生都拿出准备好的12个1立方厘米的小正方块,按第32页的第(1)题摆好。
观察结果:(1)摆成了一个什么?
(2)它的长、宽、高各是多少?
板书:长方体:长、宽、高(单位:厘米)
431
含体积单位数:4×3×1=12(个)
体积:4×3×1=12(立方厘米)
(3)它含有多少个1立方厘米?
(4)它的体积是多少?
同桌的同学可将你们的小正方体合起来,照上面的方法一起摆2层,再看:
(1)摆成了一个什么?
(2)它的长、宽、高各是多少?
(3)它含有多少个1立方厘米?
(4)它的体积是多少?(同上板书)
通过上面的实验,你发现了什么?(可让学生分小组讨论)
结论:长方体的体积=长×宽×高。
用字母表示:V=a×b×h=abh
应用:出示例1,让学生独立解答。
2.小组学习--正方体体积的计算。
思考并回答:长方体和正方体有什么关系?正方体的体积该怎样计算呢?
结论:正方体的体积=棱长×棱长×棱长
用字母表示为:V=a3
说明:a×a×a可以写成a3,读作:a的立方。
应用:出示例2,让学生独立做后订正。
三、课堂实践
1.做第34页的“做一做”的第1题。
(1)先让学生标出每个长方体的长、宽、高。
(2)再根据公式算出它们各自的体积。
(3)集体订正。
2、做第33页的“做一做”的第2题。
3、做练习七的第4、6题。
四、课堂小结
五、课后实践
做练习七的第5、7题。
《长方体和正方体体积的计算》精品教学设计
[教学内容]
教科书第27页的内容,练习六第4-8题
[教材简析]
这部分教材是学生已经掌握长方体和正方体的特征,了解体积的意义,初步掌握长方体和正方体体积公式的基础上,引导学生进一步探索长方体和正方体的体积公式,在探索中通过分析、比较、归纳,掌握“长方体(正方体)的体积=底面积×高”这一直棱柱体积的通用公式。
“练一练”和练习六第4—8题,先直观看图计算,再比较长方体(正方体)的体积=底面积×高与前面所学长方体、正方体体积计算方法的不同和联系,在比较中巩固上述公式的推理过程,然后在练习中解决一些实际问题。这样由浅入深,既巩固了长方体(正方体)的体积=底面积×高的体积公式,又使学生学会解决实际问题,体会到数学在日常生活中的应用,感受数学的价值,还发展学生的空间观念。
探索并掌握长方体(正方体)的体积=底面积×高的计算是本节课的重点。
[教学目标]
1、使学生在具体的情境中,经历比较、讨论、验证、归纳等数学活动过程,探索并掌握长方体(正方体)的体积=底面积×高的计算方法,能解决与体积计算有关的一些简单实际问题。
2、使学生在活动中进一步积累空间与图形的学习经验,增强空间观念,发展数学思考。
3、使学生进一步体会图形学习与实际生活的联系,感受图形学习的价值,提高数学学习的兴趣和学好书学得的自信心。
[教学过程]
一、观察直观图形,认识并计算长方体、正方体的底面积
(出示长方体、正方体)谈话:同学们,我们学过了长方体、正方体的特征和表面积。请同学们在小组中找出这两个图形的底面分别是哪两个面?
根据学生的回答,教师在图中涂色呈现出底面。
提问:这两个图形的底面积是哪两个面的面积?
根据学生的回答,教师板书“底面积”定义。
再提问:怎样计算长方体和正方体的底面积?
根据学生的回答,明确长方体、正方体底面积的计算方法,教师板书计算公式。
[评:《数学课程标准》要求:数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础上,在学生理解和掌握长方体、正方体特征和表面积基础上,让学生自己归纳、探索底面积的定义和计算公式,体现数学学习是一个再创造过程。]
二、探索长方体(正方体)的体积=底面积×高的计算方法
1、提问:我们前面学习的长方体、正方体体积是如何计算的?
根据学生的回答,教师板书体积公式
2、谈话:长方体和正方体的体积也可以这样来计算:长方体(正方体)的体积=底面积×高
3、提问:在小组中讨论为什么可以这样来计算长方体、正方体的体积?
学生在小组中讨论得出结论,教师帮助学生进行相应整理
4、请同学们尝试用字母表示这个公式
根据学生的回答,教师板书字母公式
[评:观察、思考、讨论、交流等都是《数学课程标准》所提倡的数学活动。在这里,先把公式直接告诉学生,让学生在借助已有知识的基础上,凭借他们自己的经验,在小组中充分交流、合作,在探索、比较中充分理解长方体(正方体)的体积=底面积×高的推理过程。]
三、分析、比较加深长方体(正方体)的体积=底面积×高的理解
1、出示“练一练”第1题
⑴、学生独立思考完成
⑵、讨论:这样计算长方体和正方体的体积与原来的计算方法有什么不同?有什么联系?
2、出示“练一练”第2题
独立做题,在班内共同订正
[评:在学生独立解决问题中,关注这种计算公式与原来计算公式的'不同与联系,进一步巩固长方体(正方体)的体积=底面积×高的计算方法,感受数学的魅力。]
四、巩固练习、拓展应用
1、做练习六第4题
⑴、借助实物帮助学生理解占地面积的实际含义
⑵、使学生明确“所占空间”就是储物柜的体积
⑶、独立做题,在班内共同订正
[评:让学生在实际应用中,巩固用“底面积×高”计算长方体体积的方法,感受这种方法在解决实际问题过程中的作用。]
2、做练习六第5题
⑴、结合图让学生指一指这根横截面的位置
⑵、引导学生想象:如果将这根木料竖起来,木料的横截面就是这个长方体的哪个面?木料的长与竖起来的长方体的高有什么关系?可以怎样计算它的体积?
[评:引导学生联系“长方体体积=底面积×高”这一方法,理解用“横截面面积×长”计算长方体体积的方法,有利于学生从不同角度加深对体积计算方法的理解。]
3、做练习六第6题
⑴、使学生明确黄沙铺成的形状是长方体,铺的厚度是长方体的高
⑵、明确要求“用方程解”
[评:这是一个在长方体沙坑铺黄沙的实际问题,让学生根据长方体的体积以及长和宽(或底面积),求它的高,既体现了知识的综合应用,又有利于提高学生应用公式解决实际问题的能力。]
4、做练习六第7题
⑴、弄清题中两个问题的联系与区别
⑵、引导学生寻找计算花坛所占空间大小以及花坛内泥土体积所需要的条件
⑶、提示:从里面量,花坛的高没有变,但底面正方形的边长只有1.3-0.3×2=0.7(米)
[评:通过让学生计算花坛所占的空间和花坛里有多少泥土这两个问题,让学生在比较中进一步明确体积和容积的不同意义。]
5、做练习六第8题
⑴、合理选择相应的信息解决实际问题
⑵、独立思考,在班内共同订正
[评:通过跑道上铺三合土和塑胶的实际问题,培养学生合理选择信息解决有关体积计算的实际问题的能力。]
五、激励评价,问题延伸
谈话:请同学们说说这节课你有什么收获?你是怎样知道的?回家后选择你身边的长方体或正方体,测量并用今天学习的知识计算它的体积。
[评:课堂总结不但关注学生知识与技能的掌握,而且关注了学生的学习过程,还把课堂中学到的知识延伸到生活中,体现了生活中处处有数学的理念。]
长方体与正方体体积计算优秀教学设计
教学要求
使学生理解长方体和正方体体积的计算公式,初步学会计算长方体和正方体的体积,培养学生实际操作能力,同时发展他们的空间观念。
教学重点
长方体、正方体体积公式的推导。
教学用具
教师准备: 1立方厘米的正方体木块24块;课件。
学生准备:1 立方厘米的正方体12个
教学过程
一、创设情境
填空:
1、___叫做物体的体积。
2、常用的体积单位有:__、__、__。
3、计量一个物体的体积,要看这个物体含有多少个____。
师:我们已经知道计量一个物体的体积,要看这个物体含有多少个体积单位,那么怎样计算任意一个长方体、正方体的体积?这节课我们就来学习长方体、正方体体积的计算方法。(板书课题)
二、实践探索
1.小组学习------长方体体积的计算。
课件演示:一块长4厘米、宽3厘米、高2厘米的长方体橡皮泥,用刀将它切成一些棱长1厘米的小正方体。
提问:通过观察,你能说出它的体积是多少?
实验:都拿出准备好的12个1立方厘米的小正方块,先说一说它们的体积是多少?师:请同学们四人为一组,用这12个小正方体来拼摆长方体,并分别记下摆出的长方体的长、宽、高。
观察结果:
(1)摆成了一个什么?
(2)它的长、宽、高各是多少?
板书:长方体:长、宽、高(单位:厘米) 体积(单位:立方厘米)
师:这些长方体有什么共同点?不同点?
问:为什么这些长方体的长、宽、高不同,即形状不相同而体积相同呢?
体积怎么计算出来的呢?
含体积单位数:4×3×1=12(个)
体积:4×3×1=12(立方厘米)
(3)它含有多少个1 立方厘米?
(4)它的体积是多少?
通过上面的实验,你发现了什么?(可让学生分小组讨论)
有许多物体不能切开,怎样计算它的体积?
结论:长方体的体积=长×宽×高。
用字母表示:V = a×b×h=abh
应用:出示例1,让学生独立解答。
2.小组学习——正方体体积的计算。
思考并回答:长方体和正方体有什么关系?正方体的体积该怎样计算呢?
结论:正方体的体积=棱长×棱长×棱长
用字母表示为:V=a3
说明:a×a×a可以写成a3,读作:a的立方。
应用:出示例2,让学生独立做后订正。
三、课堂实践
1.做第34页的“做一做”的第1题。
(1)先让学生标出每个长方体的长、宽、高。
(2)再根据公式算出它们各自的体积。
(3)集体订正。
2、做第34页的“做一做”的第2题。
3、判断正误并说明理由。
①0.2 = 0.2×0.2×0.2; ( )
②5X×2=10X; ( )
③一个正方体棱长4分米,它的体积是:4 =12(分米 ); ( )
④一个长方体,长5分米,宽4分米,高3厘米,它的体积是60分米 。( )
4、做练习七的第4、6题。
四、课堂小结
五、课后实践
做练习七的第5、7题。
课堂教学设计说明
数学课程标准对“空间与图形”的内容,以“图形的认识、图形与变换、图形与位置、图形与证明”等四条线索展开,并且都以图形为载体,以培养学生空间观念、推理能力,以及更好地认识与把握我们生存的现实空间为目标,不仅着眼于学生理解和掌握一些必要的几何事实,而且强调学生经历自主探索和合作交流的过程,形成积极的'学习态度和情感。提倡以“问题情境——建立模型——解释、应用与拓展、反思”的基本模式展现内容,让学生经历“数学化”和“再创造”的过程。
鉴于新课标的要求,本节内容是在学生已掌握了体积的概念和体积单位的基础上进行的。教学过程中主要通过学生操作的方式,调动学生积极参与长方体体积公式的推导,推理和最后的结论,都由学生得出,老师只起“导”的作用。正方体体积公式,采用小组合作的方式引导学生把它归为长方体的特殊情况来学习,这样既加深了对长、正方体之间包含关系的理解,同时也加深了对其体积计算公式的理解。总之,新课力求体现两个特点:1、给学生更多的动手操作实验与实践的空间。2、课堂教学的组织,将突出探究性活动,使学生亲历“做数学”的过程,并在这一过程中,通过自主探索,认识和掌握图形性质,积累数学活动的经验,发展空间观念和推理能力,其间特别注意给学生提供充分的数学活动交流的机会。
《长方体和正方体的体积计算》教学设计范文
教学目标:
1、理解并掌握长方体和正方体体积的计算方法。
2、能运用长、正方体的体积计算解决一些简单的实际问题。
3、培养学生归纳推理,抽象概括的能力。
教学重点和难点
长方体和正方体体积的计算方法,以及其体积公式的推导。
教学用具
1立方厘米的正方体若干块,正方体和长方体教具
教学过程设计
(一)复习准备
1.提问:什么是体积?常用的体积单位有哪些?
2.请每位同学拿出4个1厘米3的正方体,摆成一个长方体。
教师:这个长方体的体积是多少?你是怎样知道的?(因为这个长方体由 4个 1厘米3的正方体拼成,所以它的体积是 4厘米3。)
教师:如果再拼上一个1厘米3的正方体呢?
教师:要计量一个物体的体积,就要看这个物体含有多少个体积单位。如果想知道我们这间教室的体积应该怎么办呢?(引导学生理解有的物体是不能切开的',能不能运用学过的知识来解决。)能不能通过测量、计算来求出教室的体积呢?今天我们来学习怎样计算长方体和正方体的体积。板书课题:长方体和正方体的体积。
(二)引导探索
1.长方体的体积。
师:“要想求长方体的体积,你们猜想可能与什么有关呢?”
(1)教师:请同学取出12个1厘米3的小正方体。问:它们的体积一共是多少?
教师:请同学们四人为一组,用这12个小正方体来拼摆长方体,并分别记下摆出的长方体的长、宽、高。
同学分小组活动,教师巡视。教师:观察上表,你发现了什么?看一看这些数据与长方体的体积有什么关系?
学生讨论后回答:长方体的体积正好等于它的长、宽、高的乘积。
进一步验证:同桌合作,用小正方体摆出自己喜欢的长方体,看看长方体的体积是否等于长、宽、高的乘积。
教师板书:长方体的体积=长×宽×高
教师:用V表示体积,a表示长,b表示宽,h表示高,公式可以写成:
板书:V=abh。
(2)练习:(学生口答。)出示老师的长方体教具,给出长、宽、高,求体积。
师:现在老师测量了教室的长是7、5米,宽是6米,高是3米,教室的体积是多少,你们知道吗?学生快速计算。
2.正方体体积。
根据长方体和正方体的关系,你能想出正方体的体积怎样计算吗?
学生口答,老师板书: 正方体体积=棱长×棱长×棱长。
用字母表示公式:用V表体积,a表示棱长,公式可写成:V=a·a·a或者V=a3。
(2)教学例2
学生试做,指名板演。
做一做:出示老师的正方体的教具,求体积。(学生口答)
(三)巩固反馈
练习七5、6题。
(四)课堂总结
【微语】世界很大,心若向阳,哪里都有风景;路再难走,步履不停,总会有坦途。