学分高考 考试资料 > 教学设计

同类项教学设计(推荐3篇)

发布时间: 2024-08-13 09:35:09

同类项教学设计(1)

教学目标

知识与技能:

理解移项法则,会解形如ax+b=cx+d的方程,体会等式变形中的化归思想.

过程与方法:

1、能够从实际问题中列出一元一次方程,进一步体会方程模型思想的作用及应用价值.

2、经历探索移项法则法的过程,发展观察、归纳、猜测、验证的能力。

情感、态度与价值观:

结合实际问题,探索用移项法则解一元一次方程的方法,进一步认识数学来源于生活,并为生活服务,从而学生学习数学的兴趣和学好数学的信心。

教学重点

确定实际问题中的相等关系,建立形如ax+b=cx+d的方程,并利用移项和合并同类项的方法解一元一次方程.

教学难点

确定相等关系并列出一元一次方程,正确地进行移项并解出方程。

教学过程

一、情景引入:

约公元825年,中亚细亚数学家阿尔—花拉子米写了一本代数书,重点论述怎样解方程.这本书的拉丁译本取名为《对消与还原》。对消,顾名思义,就是将方程中各项成对消除的意思.相当于现代解方程中的“合并同类项”,那“还原”是什么意思呢?

二、自主学习:

1. 解方程:

2. 把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.这个班有多少学生?

3x+20=4x-25

观察上列一元一次方程,与上题的类型有什么区别?

3.新知学习 请运用等式的性质解下列方程:

(1) 4x-15 = 9; (2) 2x = 5x -21

你有什么发现?

三、 精讲点拨

问题2 你能说说由方程到方程的变形过程中有什么变化吗?

移项的定义:一般地,把方程中的某些项改变符号后,从方程的一边移到另一边,这种变形叫做移项。

移项的依据及注意事项:移项实际上是利用等式的性质1.注意:移项一定要变号。

例1 解下列方程:

解:移项,得3x+2x=32-7

合并同类项 ,得5x=25

系数化为1,得x=5

移项时需要移哪些项?为什么?

针对训练:解下列方程:

(1) 5x-7=2x-10; (2) -0.3x+3=9+1.2x.

四、 合作探究

列方程解决问题

例2 某制药厂制造一批药品,如果用旧工艺,则废水排量要比环保限制的最大量还多200 t;如果用新工艺,则废水排量要比环保限制的最大量少100 t.新旧工艺的废水排量之比为2:5,两种工艺的废水排量各是多少?21

思考:如何设未知数?

你能找到等量关系吗?

五、 当堂巩固

1. 对方程 7x = 6 + 4x 进行移项,得___________,合并同类项,得_________,系数化为1,得________.

2. 小新出生时父亲28岁,现在父亲的年龄比小新年龄的3倍小2岁. 求小新现在的年龄.

3. 在一张普通的月历中,相邻三行里同一列的三个日期数之和能否为30?如果能,这三个数分别是多少?

六、 课堂小结

1.本节课主要学习了解一元一次方程的方法:移项,移项的根据是等式的性质1。

2.本节的实际问题的相等关系的依据:表示同一个量的两个式子相等。

3.列方程解实际问题的基本思路。

七、作业布置

1.必做题:教科书第91页习题3.2第3(3),(4),11题。

2.选做题:

(1)周末,甲、乙两个商场搞促销活动,甲商场的活动为所有商品全部按标价的8折出售,乙商场的活动为标价200元以下的商品按标价出售,超出200元的部分打7折.现有某件商品在两个商场的标价都为400元,应当在哪个商场购买更实惠?如果标价为600元呢?为800元呢?你能否给顾客一些建议,以便获得更大的实惠呢?

八、板书设计

同类项教学设计(2)

初一数学《解一元一次方程一合并同类项与移项》教学设计

教材分析

合并同类项与移项是解方程的基础,解方程其移项根据是等式性质1、系数化为1其根据是等式性质2,解方程是今后进一步学习不可缺少的知识。因而,解方程是初中数学中必须要掌握的重点内容。

学生分析

学生已学会了有理数运算,掌握了单项式、多项式的有关概念及同类项、合并同类项,和等式性质,进一步将所学知识运用到解方程中,虽然所教班级的学生受基础知识和思维发展水平的限制,抽象概括能力不强,但学生上进心强,有强烈的好奇心和好胜心,初步养成了与他人合作交流、勇于探索的良好习惯。

【教学目标】

(一)知识技能

1.掌握解方程中的合并同类项.

2.理解并掌握移项变号法则进行解方程.

3.灵活的运用移项变号法则解决一些实际问题.

(二)数学思考

使学生在解决问题的过程中进一步体验方程是刻画现实世界的一个有效的模型,感受方程的作用.

(三)解决问题

能够用合并同类项和移项法则解相应的一元一次方程;能够解决相关实际问题.

(四)情感态度

解方程时渗透数学变未知为已知的数学思想,培养学生独立思考问题的能力

【教学重点】

利用合并同类项、移项变号法则解方程.

【教学难点】

合并同类项 、移项变号法则.

【学习过程】

一、新课导入

1.约公元825年,数学家阿尔-花拉子米写了一本代数书,重点论述了怎样解方程.这本书的译本名称为《对消与还原》.“对消”“还原”是什么意思呢?我们先讨论下面的内容,然后再回答这个问题。

2.引导学生探索新知

问题1:某校三年共买了新桌椅270套,去年买的数量是前年的2倍,今年又是去年的3倍,前年这个学校买了多少套桌椅?

【师生活动】

教师:同学们,在我们生活中存在很多这样的问题,请你帮忙解决一下,你准备怎么做,谁能说一说自己的想法。 请说出你的理由?

学生:我准备用方程解决这个问题。用方程解比较简单,设出的未知数就可以当成已知的条件来用了。

教师:那我们就按这位同学的意思用方程的方法来解,哪位同学能说一下第一步应当先干什么呢?举手回答。

学生:先设出未知数,因数去年的数量和前年的数量有关,今年的数量又和去年数量有关,因此设前年购买新桌椅x套,可以表示出:去年购买了2x套,今年购买了6x套。

教师:未知数设了,下一步应该做什了呢?

学生:列方程。

教师:列方程的根据是什么?

学生:相等关系是,前年购买的桌椅+去年买的桌椅+今年买的桌椅=270套。

教师:谁说一下?

学生:x+2x+6x=270

教师:请同学们仔细观察等号左边的三个代数式有什么特点?

学生:都含有字母x,并且x的指数相同都是1.

教师:我们在第二章的内容中学习了,具有这们特点的式子我们把它们叫什么?

学生:同类项。

教师:提到同类项了,我们就会想到什么?

学生:合并同类项

教师:谁还记得怎么合并同类项?

学生:同类项的系数相加减,字母和字母的指数不变。

教师:我们共同说一个x+2x+6x合并后的结果为

学生:9x

教师:此时方程就变成了9x=270,我们要求的是x而不是9x,如何求出x?

学生:根据等式性质2两边都除以9,得到x=30

活动:从上述方程的解决你能发现什么?

教师:同学们仔细观察原来9x的系数是9,后来根据等式的性质2两边都除以9后得到了x,此时x的系数是1,这个过程我们把它叫做系数化为1。“系数化为1”指的是使方程的一边ax化为x现在我们把这个问题解决了,请同学们仔细回忆一下我们是怎么做的。这里可能还有其他设未知数的方法(比如设今年的为x台)若出现这种情况,请同学分析比较多种解决方案中的简易,找到最简方法.

教师:请同学们思考上面解方程中“合并同类项”起了什么作用?

学生:起到了化简的作用。

教师:出示例题-3x+0.5 x=10

学生:在练习本上做,然后集体订正。

巩固练习:第89页 练习的(2)(4).

二、问题引申、共同探究

让学生在活动中发现移项变号法则,培养学生用方程的意识解决数学中的实际的。

问题2: 把若干本书发给学生,如果每人发4本,还剩下2本;如果每人发5本,还差5本,问这个班有多少名学生?

学生活动:

学生独立思考,发现若设这个班有x名学生。

每人分4本时,共分出书的总数为4x ,加上剩余的2本,这些书的总数为(4x+2)本。

每人分5本时,需要书的总数为5x本,减去缺的5本,这些书的总数是(5x-5)

于是这些书有两种表示方法,书的总数不变,根据这个等量关系,得到方程4x+2=5x-5.

教师活动设计:让学生体会运用方程的优点,同时学生可能发现多种解决方案(比如设数的总数是x,则可以列出相应的方程)同样让学生进行比较,发现最佳方法.

思考:对于方程4x+2=5x-5两边都含有x,如何把它向x=a的形式转化?

学生活动设计:学生主动探究解决问题的方法,为了达到解方程的目的,可以运用等式性质1,把等式的两边同时减去5x,则等号的右边没有了x的项4x-5x+2=-5,再把等式的两边同时减去2,则方程的左边没有了常数项,于是得到4x-5x=-5-2,然后转化为我们所熟悉的形式,进行合并便可以解决该问题了。

教师活动设计:在学生解决问题的过程中,让学生自己观查发现变形的特点,从而让他们总结出移项变号.

活动:让学生观察由方程4x+2=5x-5得到方程4x-5x=-5-2的这一过程,你们能发现什么?

师生共同归纳:

把等式的一边的某项变号后移到另一边,叫作移项(依据是等式性质1).

教师:上面解方程中“移项”起了什么作用?

学生:自由发言

教师:解释“对消”与“还原”就是指“合并同类项”和“移项”

三、巩固练习

应用移项与合并同类项解方程,进一步深化解方程的过程。

例: 解下列方程.

(1)3x+5=4 x+1;   (2)9-3y=5y+5 ;  .

学生活动设计:找两个学生上黑板板演,在板演后,让学生对以上同学的做法进行评价,寻找问题所在,表达问题产生的原因,找到正确的方式方法.

教师活动设计:引导学生对解方程的过程进行独自体验,进一步感受解方程的过程.

〔解答〕(1)移项,得

3x-4x=1-5。

合并同类项,得

-x=-4。

系数化为1,得

x=4.

〔解答〕(2)移项得。

-3y-5y=5-9。

合并得。

-8y=-4。

系数化为1得。

四、拓展应用

解决实际问题,培养学生思维的深刻性

问题1:老师的学校距离林东镇20公里,公共汽车行驶0.5小时正好走完全程,求公共汽车的平均速度.

问题2:如果老师的学校距离林东镇20公里,公共汽车0.5小时所走的路程大于全程,求公共汽车的平均速度.能不能用方程来解答?为什么?

【师生活动】

学生口头解答问题1,尝试解答问题2,并在小组内交流讨论.

教师引导学生通过对问题2的思考,归纳、概括出列方程解实际问题的关键为:找相等关系.

教师要重点关注学生能否根据方程的定义想到列方程解应用题要找相等关系.

【设计意图】

通过对问题1的解答,使学生回顾列方程解应用题的六个步骤.同时使学生认识到方程是解决实际问题的一种工具.

通过对问题2的探究,使学生知道为什么列方程解应用题要找相等关系,使学生经历知识的`形成过程.最终达到知其然知其所以然的目的.

例2:一艘船从甲码头到乙码头顺流行驶,用了2小时;从乙码头返回甲码头逆流行驶,用了2.5小时.已知水流的速度是3千米/时,求船在静水中的平均速度。

解:设船在静水中的平均速度为x千米/小时。

则顺流的速度为    千米/时;逆流的速度为      千米/时.

顺流的路程=         ,逆流的路程           .

相等关系为

思考:

1.在设未知数时,为什么首选船在静水中的平均速度作为未知数x?

2.怎样求甲乙两个码头之间的距离?

【师生活动】

学生自主完成空白部分,完成后组内交流.为下节课的内容做基础。

教师巡视指导,关注学生能否找准相等关系.请学生展示,并讲解解答思路.

学生独立列方程并解方程.

教师找部分学生板演并讲解思路.

教师关注学生能否正确解方程.

【设计意图】

通过空白部分的填写,给学生更多的思考空间,促进学生积极思考,发展学生的思维.同时通过空白部分的引领,降低问题的难度,从而将难点锁定在找相等关系上.避免难点太多,造成无从下手,重点、难点不突出的情况.利于学生形成正确的思维过程.

五、课堂小结

学生谈本节课的收获,教师进行总结。

六、作业布置

必做题:课本93页1、3题

选做题:

1.洗衣机厂今年计划生产洗衣机25 500台,其中 Ⅰ型、Ⅱ型、Ⅲ型三种洗衣机的数量比为 1:2:14,这三种洗衣机计划各生产多少台?

2.用一根长60m 的绳子围出一个矩形,使它的长是宽的1.5倍,长和宽各应是多少?

板书设计:

解一元一次方程

1.合并同类项起的作用:化简

2.移项:把等式一边的某项变号后移到另一边,叫做移项。

注意:移项变号。

例1(1)移项,得

3x-4x=1-5。

合并同类项,得

-x=-4。

系数化为1,得

x=4.

七、教学反思

实施开放式教学,倡导自主探索、合作交流的学习方式。让学生从熟悉的生活实例出发,探索获得同类项概念,体验知识的形成过程,体会观察、分析、归纳等解决问题的技能与方法。教师只是整个教学活动的组织者和指导者,体现了以人为本的现代教学理念。

同类项教学设计(3)

《合并同类项》教学设计

教学目标:

(一)知识目标

(1)了解同类项的概念,能识别同类项;

(2)会合并同类项,知道合并同类项所依据的运算律。

(二)能力目标

培养学生的观察、分析、归纳的能力,进一步培养学生的思维能力。

(三)情感、态度、价值观

(1)积极营造亲切和谐的课堂氛围,激励全体学生积极参与数学活动,进一步培养学生团结协助,严谨求实、合作交流、勇于创新的精神。

(2)激发学生探究数学的兴趣,发扬合作学习的精神,培养学生的语言表达能力,并学会与他人合作的能力,在合作中体验成功的喜悦,建立自信心。

教学重点和难点:

重点:同类项的'概念、合并同类项的法则及应用。

难点:正确判断同类项;准确合并同类项。

教学过程:

一、 出示问题,引出同类项的概念

1、问题:我们到动物园参观,发现老虎与老虎关在一个笼子里,鹿与鹿关在另一个笼子里。为何不把老虎与鹿关在同一个笼子里呢?

问题:在日常生活中,你发现还有哪些事物也需要分类?能举出例子吗?如:垃圾、零钱、水果及各种产品分类.

2、议一议: 归为同类需要有什么共同的特征?

8n和5n 3ab 和 -2ab 6xy和 -3yx, -7a2b 和 2a2b 5和-3

3、概念:所含字母相同,并且相同字母的指数也相同的项,叫做同类项。

注意:

(1)两同:所含字母相同,相同字母的指数也相同

(2)两无关:同类项与系数无关,与字母的排列顺序也无关

(3)几个常数项也是同类项。

4、课堂检测1:下列各组中的两项是不是同类项?为什么?

(1)ab与3ab (2)6b2a与2ab (3)3xy与- xy

(4)2a与2ab (5)-2.1与 3 (6)5与b

二、如果一个多项式中含有同类项,那么常常把同类项合并起来,使结果得到简化,那么怎样才能把同类项合并起来呢?请同学们思考下面的问题?

问题1:

3ab+ 5ab=_______ 理由是________

-4xy - 2xy=_______ 理由是_______

-3a + 2b= _______ 理由是_______

问题2:

不在一起的同类项能否将同类项结合在一起?为什么?

例如:试化简多项式3xy-2ab–3+ 5xy + 3ba + 5

解:3xy-2ab-3+5xy+3ba+5--------------找出同类项

=3xy+5xy-2ab+3ba-3+5 ----------加法交换律

=(3xy+5xy)+(-2ab+3ba )+(-3+5)--加法结合律

=(3+5)xy+(-2+3)ab+2 ---------乘法分配律逆用

=8xy + ab + 2 ----------合并同类项

合并同类项: 把同类项合并成一项就叫做合并同类项

问题3:探讨合并同类项后,所得项的系数、字母以及字母的指数与合并前各同类项的系数、字母及字母的指数有什么联系?

合并同类项后,所得项的系数等于合并前各同类项的系数之和;合并同类项后,字母以及字母的指数与合并前字母以及字母的指数相同。

合并同类项法则:

同类项的系数相加,所得的结果作为系数,字母和字母的指数不变。(“即一相加,两不变”)

三、例题1:合并下列各式中的同类项:

(1) 2ab - 3ab + ab

(2) a – 4ab + ab + 2ab- 5ab + b

(3) 6a -5b + 2ab + b - 6a

方法是:(1)系数:各项系数相加作为新的系数。

(2)字母以及字母的指数不变。

注意:

(1)用画线的方法标出各多项式中的同类项,减少运算的错误。

(2)移项时要带着原来的符号一起移动。

(3)两组同类项之间用“+”号连接。

(4)多项式中只有同类项才能合并,不是同类项不能合并。

思考:合并同类项的步骤是怎样?

合并同类项一般步骤:

找出同类项 ,交换律 ,结合律,分配律逆用 ,合并

课堂检测2: (1)3x + x

(2) 2x - 7y - 5x + 11y - 1

(3)4a + 3b + 2ab - 4a - 4b

例题2:求代数式-3x2 + 5x - x2 + x + 1- 7x的值,其中x=2。

四、课堂小结:通过这节课的学习,你有哪些收获?

【微语】真诚,只留给同样真诚的人。

温馨提示:
本文【同类项教学设计(推荐3篇)】由作者学习这件小事提供。该文观点仅代表作者本人,学分高考系信息发布平台,仅提供信息存储空间服务,若存在侵权问题,请及时联系管理员或作者进行删除。
我们采用的作品包括内容和图片部分来源于网络用户投稿,我们不确定投稿用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的权利,请联系我站将及时删除。
内容侵权、违法和不良信息举报
Copyright @ 2024 学分高考 All Rights Reserved 版权所有. 湘ICP备17021685号