1.关于三角函数的教学,应注意以下问题:
(1)要根据学生的生活经验,创设丰富的情境,使学生体会三角函数模型的意义。例如,通过单摆、弹簧振子、圆上一点的运动,以及音乐、波浪、潮汐、四季变化等实例,使学生感受周期现象的广泛存在,认识周期现象的变化规律,体会三角函数是刻画周期现象的重要模型。
(2)借助单位圆,帮助学生直观地认识任意角的三角函数,理解三角函数的周期性、诱导公式、同角三角函数关系式,以及三角函数的图象和基本性质。引导学生自主地探索三角函数的有关性质,培养他们分析问题和解决问题的能力。
(3)弧度是学生比较难接受的概念,教学中应使学生体会弧度也是一种度量角的单位,可在后续课程的学习中逐步理解这一概念,在此不作深究。
2.关于平面向量的教学,应注意以下问题:
(1)向量概念的教学应从物理背景和几何背景入手,物理背景是力、速度、加速度等概念,几何背景是有向线段。了解这些物理背景和几何背景,对于学生理解向量概念和运用向量解决实际问题都是十分重要的。
(2)引导学生运用向量解决一些物理和几何问题。例如,利用向量计算力使物体沿某方向运动所做的功,利用向量解决平面内两条直线平行与垂直的位置关系等问题。对于用向量解决较为复杂的平面几何问题不作要求。
(3)向量的非正交分解、向量投影的概念只要求了解,不必展开。线段定比分点坐标公式及应用不作要求。
3.三角恒等变换的教学,应注意以下问题:
(1)教学中,注意展示数学发现的过程,可以引导学生利用平面向量的数量积推导出两角差的余弦公式,并由此公式推导出两角和与差的正弦、余弦、正切公式,二倍角的正弦、余弦、正切公式。
(2)鼓励学生独立探索和讨论交流,引导学生推导积化和差、和差化积、半角公式,以此作为三角恒等变换的基本训练。
(3)能利用同角三角函数的基本关系式、诱导公式、两角和与差的三角函数公式、二倍角的三角函数公式,进行简单的三角函数式的化简、求值及恒等式证明。其中,简单的三角函数式的化简、求值及恒等式证明指三角函数变形的次数一般不超过三次,整个解题过程中三角函数公式的使用一般不超过5个。
改进的设想:
(1)回顾任意角、象限角与轴线角的概念.
(2)回顾锐角三角函数的定义,有了任意角之后,原来三角函数的定义有局限性,需要对其重新定义,以适用于任意的三角函数.
(3)除了锐角的三角函数外,在其它学科中有没有接触到一些特殊角的三角函数值?(意图是让学生说出)
重新定义的原则有哪些?
①和谐的原则,新定义应该包含以前的定义,即当角为锐角时,其定义应与前面的三角形边的比值等价.由此可以确定,新的定义仍应是比值的形式;
②传承的原则,新定义应保留旧定义中的一些做法,如可以同样在角的终边上任取一点来定义,且所得结果应与所取点的位置无关.
③相容的原则,新定义不能与一些熟悉的结论相矛盾.如当角为钝角时,其余弦值应为负值.由此可知,新的三角函数的定义应保证所得三角函数值有正负之分;
④自然的原则,新定义不能出来得很奇怪,要让人接受必须顺其自然,可在我们前面讨论的象限角的基础上进行,换句话说,老师在给出一个任意角的时候,就可以将角直接放在直角坐标系下,因为前面已讨论过象限角.
按上述几个原则让学生自主探究.
我的教育策划038:“同角三角函数的基本关系”教学反思
1、初中与高中有关此内容的异同整合。
(1)、角度的拓广(锐角与任意角);
(2)、研究的载体(锐角在直角三角形中,任意角在直角坐标系中);
(3)、揭示程度(直到高中才旗帜鲜明点出,初中为何忍而不发?);
(4)、知识的前后相互兼容。
2、本课思维线索:
三个问题:(1)、有哪些?(2)、注意啥?(3)有何用?
3、两个式子的.作用:
(1)、求值:
sinɑ、cosɑ、tanɑ三者知一推二!
(2)、求证:
证明三角恒等式:①从左往右证;②从右往左证;③左右往中间证;④论证等价恒等式。
(3)、求简:
化简较为复杂的三角式。
4、技巧方法:
(1)、平方关系===“1”的妙用;
(2)、商数关系===弦切互化;
(3)、求值注意===三定分析法:
①定位分析(象限角or轴线角);
②定性分析(正负性);
③定量分析(绝对值)。
(4)、整体运算===平方法。
涉及sinɑ、cosɑ的和与积关系式。当然也可以方程或方程组直接求解,可能结果繁杂或涉及分类讨论,故复杂得多,尽量回避。
《三角函数诱导公式》教学反思
陕州一高数学组 殷 雪
根据课题组和学校教学工作的安排,于3月份在学校录制了一节《三角函数的诱导公式》公开课,现将本节课的成功与遗憾之处总结如下:
本着培养学生学习数学的兴趣,逐步消除学生对数学的恐惧心理,让每个学生在课堂均有收获的原则,本节课设置的内容相对容易。本节课的学习目标是理解三角函数的诱导公式,掌握诱导公式并运用之进行三角函数式的求值、化简以及简单三角恒等式的证明;学习重点是掌握诱导公式,能观察分析公式的特点,明确公式用途,熟练驾驭公式;学习难点运用诱导公式对三角函数式的求值、化简以及简单三角恒等式的证明.
在课题研究阶段,为了培养学生对数学的兴趣,在课堂教学中尽量让学生成为课堂的主体,充分发挥学生学习的主动性,我们根据学生现状设置了导学案。导学案的知识预习和回顾部分设置以填空题为主,逐步引导学生了解本节课的重难点;课前小测部分设置的习题针对知识点设计一些较简单的习题,大部分学生通过自学就可以轻松完成,逐步树立学生的自信心,克服对数学的'恐惧;合作探究部分这对本节课的教学重难点设置一些题目,学生通过自己的思考可以解决部分内容,然后通过小组合作探究完成全部内容,有部分难点解决不了的部分教师给于适当提示。通过本节课可以看出,经过一段时间的训练,大部分同学已经基本适应了这种模式,同学的积极性也慢慢调动起来,能够在小组交流活动中大胆发言,表明自己的观点,敢于在黑板前展示本组的探究成果,语言的表达能力和数学语言的准确性也得到了很大的提高;结合班级的加分制度,增强了小组之间的竞争意识,活跃了课堂气氛,调动了学生学习数学的积极性,学生成了课堂的主宰。
但在教学过程中仍存在一些遗憾:上课时因为紧张没有在黑板上书写课题,教师基本没有板书,没能对学生起到示范作用,这对高一学生来说是非常不利的;教师在授课过程中受传统思想的影响,不能做到真正放权,还是讲的多,对学生的评价不够及时到位;学生的板书不够规范,安排不够合理,在板演过程中有的小组没能写清题号和组名。
课堂检测环节中学生大部分能完成本节课内容,课堂小结学生的发言给我一个惊喜,充分说明学生是有真正参与课堂的,有自己的想法。在今后的教学过程中要进一步放权,还课堂给学生,充分的相信学生。相信在我们师生的共同努力下,我们的数学成绩一定会有大的提高。
同角三角函数的基本关系的教学反思
“同角三角函数的基本关系”教学反思
1、主要内容
(1)、角度的拓广(锐角与任意角);
(2)、研究的载体(锐角在直角三角形中,任意角在直角坐标系中);
(3)、揭示程度(直到高中才旗帜鲜明点出,初中为何忍而不发?);
(4)、知识的前后相互兼容。
2、本课思维线索:
三个问题:(1)、有哪些?(2)、注意啥?(3)有何用?
3、两个式子的作用:
(1)、求值:
sinɑ、cosɑ、tanɑ三者知一推二!
(2)、求证:
证明三角恒等式:①从左往右证;②从右往左证;③左右往中间证;④论证等价恒等式。
教学反思《“同角三角函数的基本关系”教学反思》
(3)、求简:
化简较为复杂的三角式。
4、技巧方法:
(1)、平方关系===“1”的妙用;
(2)、商数关系===弦切互化;
(3)、求值注意===三定分析法:
①定位分析(象限角or轴线角);
②定性分析(正负性);
③定量分析(绝对值)。
(4)、整体运算===平方法。
涉及sinɑ、cosɑ的和与积关系式。当然也可以方程或方程组直接求解,可能结果繁杂或涉及分类讨论,故复杂得多,尽量回避。
同角三角函数的基本关系教学反思
身为一位优秀的老师,课堂教学是我们的任务之一,通过教学反思能很快的发现自己的讲课缺点,那么应当如何写教学反思呢?以下是小编为大家收集的同角三角函数的基本关系教学反思,欢迎阅读与收藏。
我上了一节《同角三角函数的基本关系(1)》一课,感谢数学组老师给我评课,让我收获很大,自己仔细想想,自己的课存在很多的问题:
1、对同角强调不够。提问的角度和质量,还需要有更深刻和严谨的思考。有老师提出应该讲关系式前强调一下同角,给出了基本关系式再一次强调同角。
2、讲例题时,我采取的方式是让学生先做再将。有老师提出先讲例题,再做,让学生知道规范形式和具体的书写要求。在讲例题时,运用基本关系式,应该先求sin 2 α,cos 2 α,再根据角的范围求角α,COSα的值。
3、对于本节课的同角三角函数的关系的应用中,求值是重点,而难点已知正切值,如何求解正弦值和余弦值。只是在练习2才体现。应该总结为变式1中使用了分类讨论的思想。对于题干的形式,要引导学生观察,反复观察,对于公式及其变形要反复强化,重点在观察,而在这里,我强调的不够。
4、对公式的变形、公式的理解强调不够。公式应用可以顺用、逆用、变形用,三者关系要把握好。
5、课堂中的`激情不够,没有给学生更强的感染力,课堂感觉还是平平,没有给人以心跳的感觉。
6、课堂上虽有调动学生积极性的意识,但是手段还是过于单一,教学方法不够灵活。学生的复述就是很好的方法。
7、整堂课的设计没有把握好时间,节奏没有把握好,造成前松后紧,而导致没有完成教学任务。最后设计的经典部分没有讲。
通过这次课的准备和反思,自己领悟了很多,教学需要精心的设计,耐心的思考,深刻的反思,学习。自己的教学水平需要提高,处理课堂的问题需要成熟,自己的业务水平需要尽快进步。通过这次课,让我又一次成长,在今后的教学中,我会更加努力,用心去教学,用爱去教育。