不等式的基本性质
教学目的
掌握不等式的基本性质,会用不等式的基本性质进行不等式的变形。
教学过程
师:我们已学过等式,不等式,现在我们来看两组式子(教师出示小黑板中的两组式子),请同学们观察,哪些是等式?哪些是不等式?
第一组:1+2=3; a+b=b+a; S =ab; 4+x =7.
第二组:-7< -5; 3+4 >1+4; 2x ≤6, a+2 ≥0; 3≠4.
生:第一组都是等式,第二组都是不等式。
师:那么,什么叫做等式?什么叫做不等式?
生:表示相等关系的式子叫做等式;表示不等式的式子叫做不等式。
师:在数学炽,我们用等号“=”来表示相等关系,用不等式号“〈”、“〉”或“≠”表示不等关系,其中“>”和“<”表示大小关系。表示大小关系的不等式是我们中学教学所要研究的。
前面我们学过了等式,同学们还记得等式的性质吗?
生:等式有这样的性质:等式两边都加上,或都减去,或都乘以,或都除以( 除数不为零)同一个数,所得到的仍是等式。
师:很好!当我们开始研究不等式的时候,自然会联想到,是否有与等式相类似的性质,也就是说,如果在不等式的两边都加上,或都减去,或都乘以,或都除经(除数不为零)同一个数,结果将会如何呢?让我们先做一些试验练习。
练习1 (回答)用小于号“<”或大于号“>”填空。
(1)7 ___ 4; (2)- 2____6; (3)- 3_____ -2; (4)- 4_____-6
练习2(口答)分别从练习1中四个不等式出发,进行下面的运算。
(1)两边都加上(或都减去)5,结果怎样?不等号的方向改变了吗?
(2)两边都乘以(或都除以)5,结果怎样?不等号的方向改变了吗?
(3)两边都乘以(或都除以)(-5),结果怎样?不等号的方向改变了吗?
生:我们发现:在练习2中,第(1)、(2)题的结果是不等号的方向不变;在第(3)题中,结果是不等号的`方向改变了!
师:同学们观察得很认真,大家再进一步探讨一下,在什么情况下不等号的方向就会发生改变呢?
生甲:在原不等式的两边都乘以(或除以)一个负数的情况下,不等号的方向要改变。
师:有没有不同的意见?大家都同意他的看法吗?可能还有同学不放心,让我们再做一些试验。
练习3(口答)分别在下面四个不等式的两边都以乘以(可除以)-2,看看不等号的方向是否改变:
7>4;-2<6;-3<-2;-4>-6。
师:现在我们可以归纳出不等式的基本性质,一般地说,不等式的基本性质有三条:
性质1:不等式的两边都加上(或都减去)同一个数,不等号的方向 。
(让同学回答。)
性质2:不等式的两边都乘以(或都除以)同一个正数,不等号的方向 。(让同学回答。)
性质3:不等式的两边都乘以(或都除以)同一个负数,不等号的方向 。(让同学回答。)
现在请大家翻开课本,一起朗读用黑体字写的三条基本性质。
不等式的这三条基本性质,都可以用数学语言表达出来,先请一位同学说一说第一条基本性质。
生:如果a<b。那么a+c<b+c(或a-c<b-c;如果a>b,那么a+c>b+c(或a-c>b-c)。
师:对a和b有什么要求吗?对c有什么要求?
生:没有什么要求。
教学目的
掌握不等式的基本性质,会用不等式的基本性质进行不等式的变形。
教学过程
师:我们已学过等式,不等式,现在我们来看两组式子(教师出示小黑板中的两组式子),请同学们观察,哪些是等式?哪些是不等式?
第一组:1+2=3; a+b=b+a; S = ab; 4+x = 7.
第二组:-7< -5; 3+4 >1+4; 2x ≤6,a+2 ≥0; 3≠4.
生:第一组都是等式,第二组都是不等式。
师:那么,什么叫做等式?什么叫做不等式?
生:表示相等关系的式子叫做等式;表示不等式的式子叫做不等式。
师:在数学炽,我们用等号“=”来表示相等关系,用不等式号“〈”、“〉”或“≠”表示不等关系,其中“>”和“<”表示大小关系。表示大小关系的不等式是我们中学教学所要研究的。
前面我们学过了等式,同学们还记得等式的`性质吗?
生:等式有这样的性质:等式两边都加上,或都减去,或都乘以,或都除以( 除数不为零)同一个数,所得到的仍是等式。
师:很好!当我们开始研究不等式的时候,自然会联想到,是否有与等式相类似的性质,也就是说,如果在不等式的两边都加上,或都减去,或都乘以,或都除经(除数不为零)同一个数,结果将会如何呢?让我们先做一些试验练习。
练习1 (回答)用小于号“<”或大于号“>”填空。
一、问题导入
对于比较简单的不等式,我们可以直接想出它们的解集,但是对于比较复杂的不等式,要直接想出解集来就困难了.因些,有必要讨论怎样解不等式.
和学习一元一次方程先讨论等式的性质一样,我们先来探索不等式有什么性质.
二、不等式的性质
做一做:用“”、“”填空:
(1)53,5+23+2,5-23-2;
(2)-13,-1+23+2,-1-33-3;
(3)62,6×52×5,6×(-5)2×(-5);
(4)-23,(-2)×63×6,(-2)×(-6)3×(-6).
观察(1)(2),类比等式的性质,你发现了什么规律?
性质1不等式两边加(或减)同一个数(或式子),不等号的方向不变.
即:如果a>b,那么a±c>b±c.
观察(3),类比等式的性质,你发现了什么规律?
性质2不等式两边乘(或除以)同一个正数,不等号的.方向不变.
即:如果a>b,c>0,那么ac>bc(或a/c>b/c).
观察(4),类比等式的性质,你发现了什么规律?
性质3不等式两边乘(或除以)同一个负数,不等号的方向改变.
即:如果a>b,c<0,那么ac<bc(或a/c<b/c).
思考:①比较上面的性质2与性质3,看看它们有什么区别?
性质2的两边乘或除的是一个正数,不等号的方向没有变;而性质3的两边乘或除的是一个负数,不等号的方向改变了.
②比较等式的性质与不等式的性质,它们有什么异同?
等式的性质与不等式的性质1、2,除了一个说“等式仍然成立”,一个说“不等号方向不变”的说法不同外,其余都一样;而不等式的性质3说“不等号方向改变”,这与等式的性质说法不同.
三、例题
例1利用不等式的性质填“”,“”:
(1)若ab,则2a2b;
(2)若-2y10,则y-5;
(3)若ab,c0,则ac-1bc-1;
(4)若ab,c0,则ac+1bc+1.
分析:不等式的两边发生了怎样的变化?填“”或“”的依据是什么
不等式的基本性质数学教案
教学目的
掌握不等式的基本性质,会用不等式的基本性质进行不等式的变形。
教学过程
师:我们已学过等式,不等式,现在我们来看两组式子(教师出示小黑板中的两组式子),请同学们观察,哪些是等式?哪些是不等式?
第一组:1+2=3; a+b=b+a; S =ab; 4+x =7.
第二组:-7< -5; 3+4 >1+4; 2x ≤6,a+2 ≥0; 3≠4.
生:第一组都是等式,第二组都是不等式。
师:那么,什么叫做等式?什么叫做不等式?
生:表示相等关系的式子叫做等式;表示不等式的式子叫做不等式。
师:在数学炽,我们用等号“=”来表示相等关系,用不等式号“〈”、“〉”或“≠”表示不等关系,其中“>”和“<”表示大小关系。表示大小关系的不等式是我们中学教学所要研究的。
前面我们学过了等式,同学们还记得等式的性质吗?
生:等式有这样的性质:等式两边都加上,或都减去,或都乘以,或都除以( 除数不为零)同一个数,所得到的仍是等式。
师:很好!当我们开始研究不等式的时候,自然会联想到,是否有与等式相类似的性质,也就是说,如果在不等式的两边都加上,或都减去,或都乘以,或都除经(除数不为零)同一个数,结果将会如何呢?让我们先做一些试验练习。
练习1 (回答)用小于号“<”或大于号“>”填空。
(1)7 ___ 4; (2)- 2____6; (3)- 3_____ -2; (4)- 4_____-6
练习2(口答)分别从练习1中四个不等式出发,进行下面的运算。
(1)两边都加上(或都减去)5,结果怎样?不等号的方向改变了吗?
(2)两边都乘以(或都除以)5,结果怎样?不等号的方向改变了吗?
(3)两边都乘以(或都除以)(-5),结果怎样?不等号的方向改变了吗?
生:我们发现:在练习2中,第(1)、(2)题的`结果是不等号的方向不变;在第(3)题中,结果是不等号的方向改变了!
师:同学们观察得很认真,大家再进一步探讨一下,在什么情况下不等号的方向就会发生改变呢?
生甲:在原不等式的两边都乘以(或除以)一个负数的情况下,不等号的方向要改变。
师:有没有不同的意见?大家都同意他的看法吗?可能还有同学不放心,让我们再做一些试验。
练习3(口答)分别在下面四个不等式的两边都以乘以(可除以)-2,看看不等号的方向是否改变:
7>4;-2<6;-3<-2;-4>-6。
师:现在我们可以归纳出不等式的基本性质,一般地说