若an=n2+λn+3(其中λ为实常数),n∈N*,且数列{an}为单调递增数列,则实数λ的取值范围为________.
(-3,+∞)
解法1:(函数观点)因为{an}为单调递增数列,所以an+1>an,即(n+1)2+λ(n+1)+3>n2+λn+3,化简为λ>-2n-1对一切n∈N*都成立,所以λ>-3.
故实数λ的取值范围为(-3,+∞).
解法2:(数形结合法)因为{an}为单调递增数列,所以a1<a2,要保证a1<a2成立,二次函数f(x)=x2+λx+3的对称轴x=-应位于1和2中点的左侧,即-<,亦即λ>-3,故实数λ的取值范围为(-3,+∞).
等差数列的定义:
一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做公差,用符号语言表示为an+1-an=d。
微信扫码关注公众号
获取更多考试热门资料